Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16-/8- BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

 μ PD78P312A is a 16-/8-bit single-chip microcomputer having the same functions as μ PD78312A, except that the internal mask ROM of μ PD78312A is replaced with one-time ROM or EPROM. Allowing data to be written only once, the one-time EPROM product is suited for small-scale production of various types of products, or early development of the application system. The EPROM version allows programs to be written more than once and is ideal for system evaluation.

A detailed functional description is provided in the following user's manual. Be sure to read this manual when designing your system.

μPD78312A User's Manual: IEM-5086

FEATURES

- Compatible with μPD78312A
 - Can be replaced with μ PD78312A, which integrates mask ROM, when the application system is mass-produced
- Internal PROM: 8,192 x 8 bits
 - · Data can be written only once (one-time PROM product without window)
 - · Erasable by ultraviolet ray. Electrically rewritten (EPROM product with window)
- PROM programming characteristics: Compatible with μPD27C256A
- Available as QTOPTM microcomputer

Remarks: QTOP microcomputer is the generic name for the NEC built-in PROM single-chip micro computer providing total support of program writing, printing, screening, and verifying.

ORDERING INFORMATION

Package	Internal ROM
64-pin plastic shrink DIP (750 mil)	One-time PROM
64-pin plastic QFP (14 x 20 mm)	ditto
64-pin plastic QUIP	ditto
68-pin plastic QFJ (☐ 950 mil)	ditto
64-pin shrink DIP with ceramic window (750 mil)	EPROM
64-pin QUIP with ceramic window	ditto
	64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 x 20 mm) 64-pin plastic QUIP 68-pin plastic QFJ (950 mil) 64-pin shrink DIP with ceramic window (750 mil)

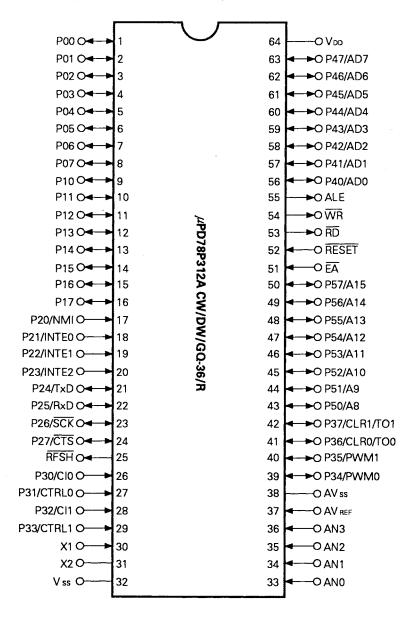
QUALITY GRADE

Standard

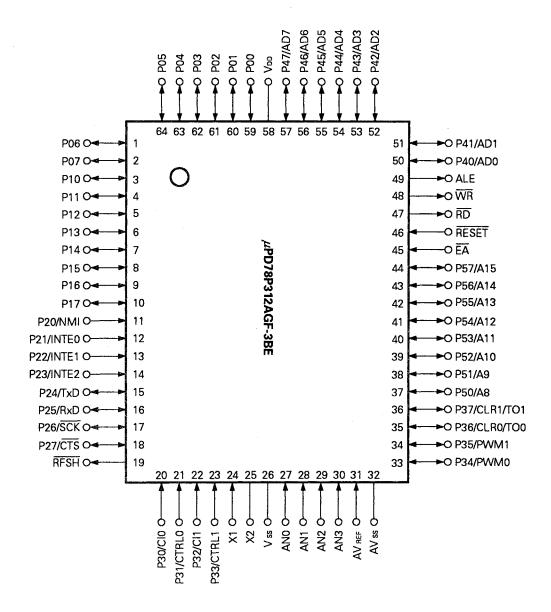
Please refer to "Quality Grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and their recommended

The information in this document is subject to change without notices.

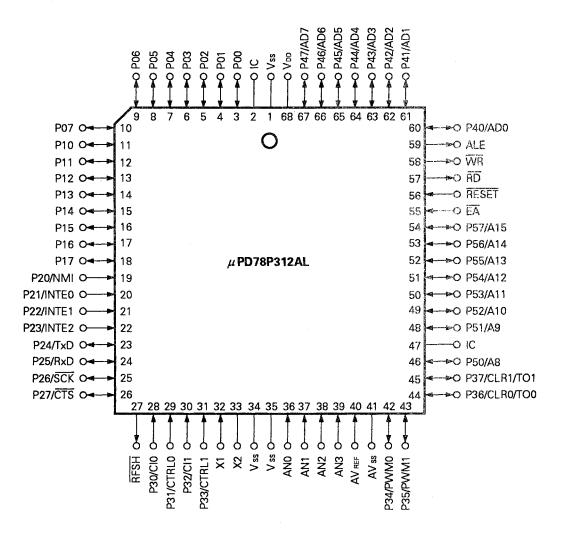
Document No. IC-2512B (0. D. No. IC-7772B) Date Published November 1993 P


Printed in Japan

The mark ★ shows the major revised points.


PIN CONFIGURATION (Top View)

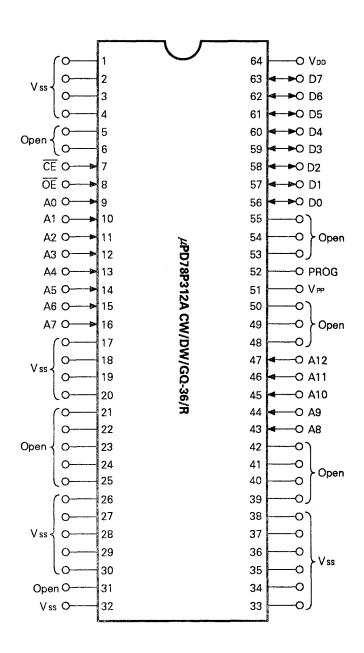
- (1) Normal operation mode
 - (a) 64-pin plastic shrink DIP/QUIP
 64-pin shrink DIP/QUIP with ceramic window



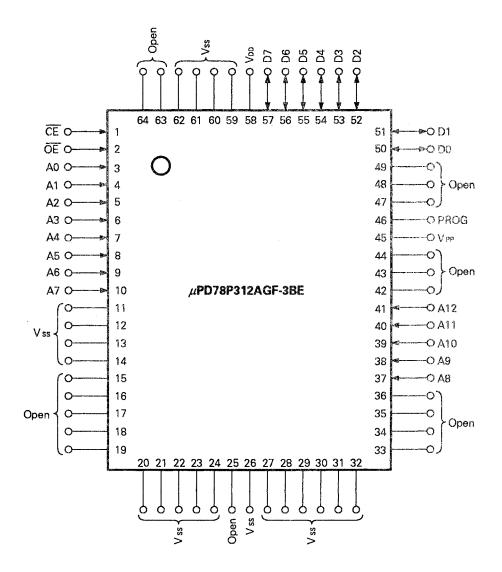
P00-P07 :	: Port0	ALE :	Address Latch Enable	NMI :	Nonmaskable Interrupt
P10-P17 :	: Port1	RFSH :	Refresh	INTEO-INTE2:	Interrupt From Externals
P20-P27 :	: Port2	X1, X2 :	Crystal	AN0-AN3 :	Analog Input
P30-P37 :	: Port3	RESET :	Reset	AVREF :	Reference Voltage
P40-P47 :	: Port4	ĒĀ:	External Access	AVss :	Analog Vss
P50-P57 :	: Port5	CI0, CI1 :	Count Pulse Input	RxD :	Receive Serial Data
AD0-AD7:	: Address/Data	CTRLO, CTRL1:	Control Pulse Input	TxD :	Transfer Serial Data
A8-A15 :	: Address	CLR0, CLR1 :	Timer Clear Input	SCK :	Serial Clock
RD :	: Read Strobe	PWM0, PWM1:	Pulse Width Modulation Output	CTS :	Clear To Send
WR :	: Write Strobe	TO0, TO1 :	Timer Output	IC :	Internally Connected

(b) 64-pin plastic QFP (14 x 20 mm)

(c) 68-pin plastic QFJ (950 mil)

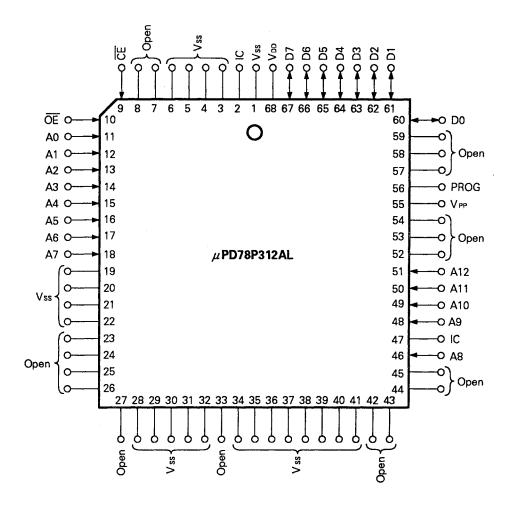


(2) PROM programming mode


(a) 64-pin plastic shrink DIP/QUIP
64-pin shrink DIP/QUIP ceramic window

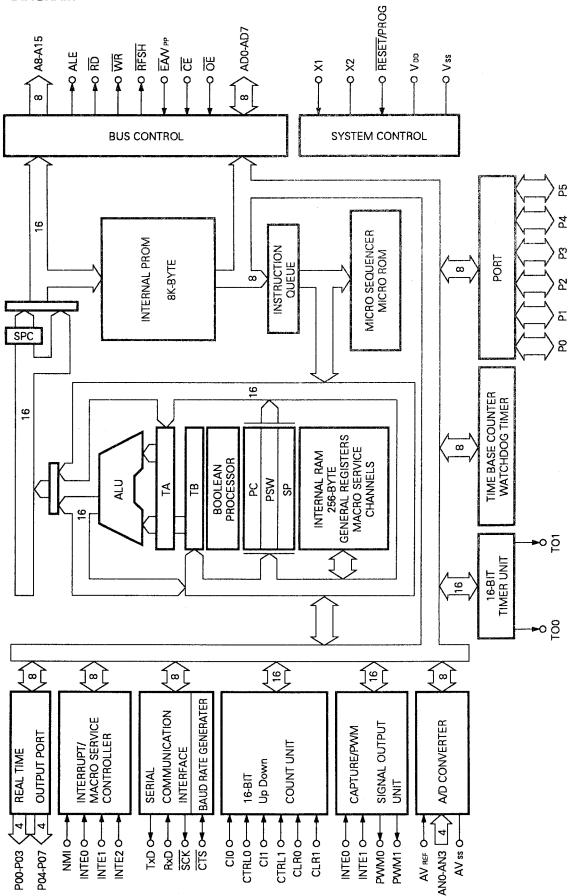
Note: 1. Vss : Ground this pin.

2. Open: Do not connect this pin.


(b) 64-pin plastic QFP (14 x 20 mm)

Note: 1. V_{ss}: Ground this pin.

2. Open: Do not connect this pin.


(c) 68-pin plastic QFJ (☐ 950 mil)

Note: 1. Vss : Ground this pin.

2. Open: Do not connect this pin.

BLOCK DIAGRAM

CONTENTS

1.	PIN	-UNCTIONS 10	
	1.1	PORT PINS	
	1.2	ALL OTHER PINS (IN NORMAL OPERATION MODE)	
	1.3	ALL OTHER PINS (ON PROM PROGRAMMING MODE)12	
	1.4	PIN INPUT/OUTPUT CIRCUITS	
	1.5	RECOMMENDED CONDITIONS FOR UNUSED PINS	
2.	СОМ	PARISON OF FAMILY PRODUCTS16	
3.	PRO	M PROGRAMMING17	
	3.1	PROM PROGRAMMING MODE17	
	3.2	PROM WRITE PROCEDURE18	
	3.3	PROM READ PROCEDURE19	
	3.4	ERASING PROCEDURE (EPROM PRODUCT ONLY)19	
	3.5	SCREENING OF ONE-TIME PROM PRODUCTS19	*
4.	ELEC	CTRICAL CHARACTERISTICS20	
5.	EXTE	ERNAL DIMENSIONS36	
6.	RECO	OMMENDED SOLDERING CONDITIONS42	
APF	PENDIX	(A DIMENTIONS OF CONVERSION SOCKET AND RECOMMENDED MOUNTING PATTERN44	*
ΔPE	PENIDIS	CR DEVELOPMENT TOOLS 46	

1. PIN FUNCTIONS

1.1 PORT PINS

Pin Name	Input/ Output	Shared Pin #	Function
P00-P05		-	(Port 0)
P06	Input/ output,	(CE)	This is an 8-bit input/output port that can be specified for input or output in bit units.
P07	real-time output	(OE)	This port can be used as two independent 4-bit real-time output ports (channels)
P10-P17	Input/ Output	(A0-A7)	(Port 1) This is an 8-bit input/output port that can be specified for input or output in bit units.
P20		NMI	(Port 2)
P21		INTE0	P20 to P23 are input port pins. P24 to P27 are input/output port pins each of which can be
P22	Input	INTE1	independently specified for input or output.
P23		INTE2	
P24		TxD	
P25	Input/	RxD	
P26	output	SCK	
P27		CTS	
P30		CIO	(Port 3)
P31		CTRLO	P30 to P33 are input port pins. P34 to P37 are input/output port pins each of which can be
P32	Input	CI1	independently specified for input or output.
P33		CTRL1	
P34		PWM0	
P35	Input/	PWM1	
P36	output	TO0-CLR0	
P37	1	TO1-CLR1	
P40-P47	Input/ output	AD0-AD7 (D0-D7)	(Port 4) This is an 8-bit input/output port that can be specified for input or output in 8-bit units.
P50-P54	Input/	A8-A12 (A8-A12)	(Port 5) This is an 8-bit input/output port that can be specified for
P55-P57	output		input or output in bit units.

^{*:} Parentheses indicate the pin name shared in the PROM programming mode.

1.2 ALL OTHER PINS (IN NORMAL OPERATION MODE)

(1/2)

Pin Name	Input/ Output	Shared Pin*	Function	
NMI	Input	P20	Non-maskable interrupt request pin	
INTEO		P21	External interrupt request input pin	
INTE1	Input	P22		
INTE2		P23		
TxD	Output	P24	Serial data output pin	
RxD	Input	P25	Serial data input pin	
SCK	Output	P26	Serial clock output pin	
стѕ	Input/ Output	P27	 In the asynchronous mode, this pin serves as the transmit enable control pin. In the I/O interface mode, this pin inputs/outputs the serial clock. 	
CIO		P30	These pins input the external count clock for the count	
CI1	Input	P32	unit.	
CTRL0		P31	These pins input the count operation selection control	
CTRL1	Input	P33	signal for the count unit.	
CLR0	Input	P36/TO0	Count unit clear signal input pin	
CLR1	input	P37/TO1		
PWM0	Output	P34	PWM output pin	
PWM1		P35		
TO0	0	P36/CLR0	Timer unit pulse output pin	
TO1	Output	P37/CLR1		
AD0-AD7	Input/ Output	P40-P47 (D0-D7)	Multiplexed address/data but pins used when the external memory space is expanded.	
A8-A12	Output	P50-P54 (A8-A12)	Address bus pins when the external memory space is expanded.	
A13-A15		P55-P57		
WR	Output	-	External memory write signal output pin	
RD	Output	-	External memory read signal output pin	
ALE	Output	-	This pin outputs the timing signal used to externally latch the address output when accessing the external memory.	
AN0-AN3	Input		A/D converter analog input pin	
AVREF	Input	_	A/D converter reference voltage input pin	
AVss	_	_	A/D converter GND pin	

^{•:} Parentheses indicate the pin name shared in the PROM programming mode.

(2/2)

Pin Name	Input/ Output	Shared Pin*	Function	
X1	Input		The system clock crystal is connected across these pins.	
X2	-		 When using an external clock, the X1 pin inputs the external clock. 	
RFSH	Output	-	This pin outputs the refresh pulse to the externally connected pseudo-static memory.	
RESET	Input	(PROG)	System reset pin	
V _{DD}		_	Positive power supply pin	
Vss		***	GND	
ĒĀ	Input	(VPP)	This pin is usually connected to Vob. When this pin is connected to Vss, the ROM-less mode is set in which the external memory can be accessed. The level of this pin cannot be changed during operation.	
ıc	_	_	Internally connected. Leave this pin open.	

^{*:} Parentheses indicate the pin name shared in the PROM programming mode.

1.3 ALL OTHER PINS (ON PROM PROGRAMMING MODE)

Pin Name	Input/ Output	Shared Pin	Function	
A0-A7		P10-P17	Address input pins	
A8-A12	Input	P50-P54/ A8-A12		
D0-D7	Input/ output	P40-P47/ AD0-AD7	Data input/output pins	
CE	Input	P06	Chip-enable input pin/program pulse input pin	
ŌĒ	Input	P07	Output-enable input pin	
PROG	_	RESET	PROM programming mode set pin	
VPP		EA	Program write/verify high voltage application pin	
VDD	-	_	Positive power supply pin	
Vss	_	_	GND	

1.4 PIN INPUT/OUTPUT CIRCUITS

Table 1-1 and Fig. 1-1 describe each pin input/output circuit in a simplified manner.

Table 1-1 Input/Output Circuit Type for Each Pin

Pin*	Input/output circuit type	Pin*	Input/output circuit type
P00-P05		P34/PWM0	_
P06/(CE)	5	P35/PWM1	5
P07/(0E)		P36/TO0/CLR0	_
P10-P17/(A0-A7)	5	P37/TO1/CLR1	6
P20/NMI	2	P40-P47/AD0-AD7/(D0-D7)	5
P21/INTE0		P50-P54/A8-A12/(A8-A12)	_
P22/INTE1	1	P55-P57/A13-A15	5
P23/INTE2		WR	
P24/TxD		RD	3
P25/RxD		ALE	
P26/SCK	5	ĒĀ	1
P27/CTS		AN0-AN3	7
P30/CIO		RFSH	3
P31/CTRL0	1	RESET/(PROG)	2
P32/Cl1			
P33/CTRL1			

^{*:} Parentheses indicate pin used for PROM programming.

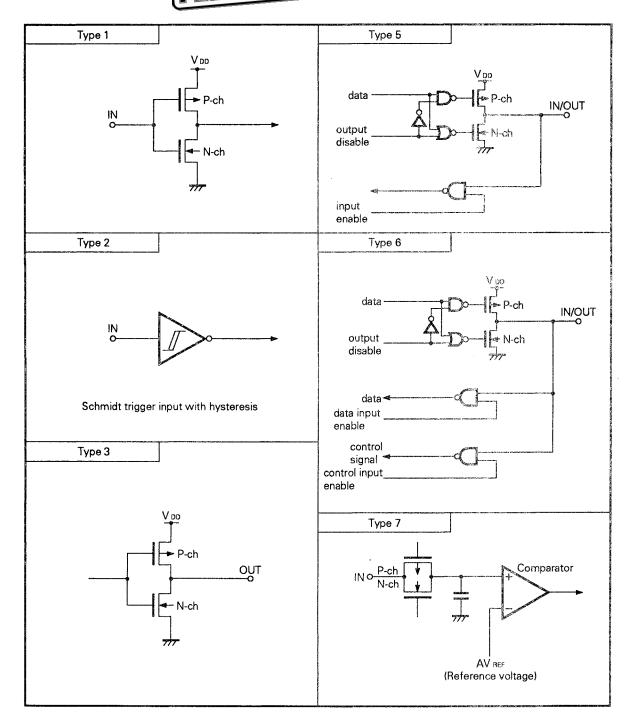


Fig. 1-1 Pin Input/Output Circuits

1.5 RECOMMENDED CONDITIONS FOR UNUSED PINS

Pin	Recommended connection
P00-P07 P10-P17	Input mode: Connect to Vpp through a pull-up resistor Output mode: Open
P20-P23	Connect to Vss
P30-P33	Connect to either Vss or VDD
P24-P27 P34-P37 P40-P47 P50-P57	Input mode: Connect to Vpp through a pull-up resistor Output mode: Open
WR RD ALE RFSH	Open
AN0-AN3	Connect to either Vss or VDD
AVref AVss	Connect to Vss

2. COMPARISON OF FAMILY PRODUCTS

The μ PD78P312A is a version of the μ PD78312A in which the internal mask ROM is replaced with an one-time PROM or EPROM. The μ PD78P312A is an upgraded version of the μ PD78P312. Table 2-1 shows a comparison of the μ PD78P312A, and μ PD78310A. Table 2-2 shows a comparison of the μ PD78P312A and μ PD78P312. Except where noted, these products are identical with respect to function.

Refer to the documents provided for the μ PD78312A and μ PD78310A for details concerning the internal hardware such as CPU functions.

Table 2-1 Comparison of μ PD78P312A, μ PD78312A, and μ PD78310A

	ltem	µРD78Р312A	μPD78312A	μPD78310A
Program memory		• PROM • 8,192 x 8 bits	• Mask ROM • 8,192 x 8 bits	Not internally provided
	PROM programming mode	Provided No		one
Pin function	Ports 4, 5	Provided Provided		None (These ports always serve as the address bus, data bus)
	ĒĀ	Provided		Provided (However, must be operated with this pin set to low)
Ext	ernal memory access	External memory can b 256 bytes, 4K bytes, 16i using the memory expa (MM).	C bytes, or 56K bytes,	Always accesses 64K bytes of the external memory (regardless of the setting in the memory expansion mode register (MM).
	Without window	 64-pin plastic shrink DIP (750 mil) 64-pin plastic QUIP 64-pin plastic QFP (14 x 20 mm) 68-pin plastic QFJ (□ 950 mil) 		nm)
Package	With window	64-pin ceramic shrink DIP with window (750 mil) 64-pin ceramic QUIP with window		None .

Table 2-2 Difference Between μ PD78P312A and μ PD78P312

ltem	µРD78Р312A	μPD78 P312
Mode 4 in count unit (4 x multiplication mode)	Provided	Not provided
Count start triggered by external pulse of interval timer	Provided	Not provided
16 bit data transfer instruction used between memory and a pair register • MOVW rp1, !addr 16 instruction • MOVW !addr 16, rp1 instruction	Provided	Not provided

3. PROM PROGRAMMING

The ROM contained in μ PD78P312A is an electrically erasable PROM with 8,192 x 8 bit configuration. The pins listed in the table below are used to program the PROM.

When used in the normal operation mode, 5 V \pm 10% is applied to the V_{DD} and V_{PP} pins. A voltage higher than V_{DD} should not be applied to other pins.

The programming characteristics of the μ PD78P312A are identical to those of the μ PD27C256A.

Pin Name	Function	
Vpp	High voltage input (write/verify mode), high level input (read mode)	
PROG	High voltage input (write/verify mode, read mode)	
A0-A7	Address input (lower 8 bits)	
A8-A12	Address input (upper 8 bits)	
D0-D7	Data input (write mode), data output (verify mode)	
CE	Program pulse input	
ŌĒ	Output enable input	
V _{DD}	Power supply pin	

Note: 1. Attach a light baffle film to μ PD78P312A with an erase window to protect the EPROM from being erased accidentally.

2. The one-time PROM product, μ PD78P312A, cannot be erased by ultraviolet rays, because it is not provided with a window.

3.1 PROM PROGRAMMING MODE

When +6 V is applied to the Voo pin and +12.5 V is applied to the PROG pin and VPP pin, the μ PD78P312A enters the program write/verify mode. Operation in this mode is determined according to the setting of \overline{CE} and \overline{OE} pins as indicated in the table below. Additionally, when set to the read mode, the μ PD78P312A can read the contents of PROM.

Operation mode specification					0			
VPP	Vaa	CE	ŌĒ	PROG	Operation mode			
	111111	L	Н		Write mo	ode		
+12.5 V	+6 V	Н	L	1	Verify mode			
		Н	Н	+12.5 V	Program	inhibit mode		
VPP=VDD=+5 V L/H		L		Read	Data is output from the D0-D7 pins			
		L/H	Н	-	mode	D0-D7 are high impedance		

Remarks: H indicates high level; L indicates low level.

Note: When +12.5 V is applied to VPP and +6 V is applied to VDD, both CE and OE must not be set to low level (L) simultaneously.

3.2 PROM WRITE PROCEDURE

Data can be written to the PROM using the following procedure. High speed data write operation is possible.

- (1) Process the pins not used in accordance with the description in Pin Configuration, and supply +6 V to the Vpp pin and +12.5 V to the Vpp pin.
- (2) Provide the initial address.
- (3) Provide write data.
- (4) Provide a 1 ms program pulse (active low) to the CE pin.
- (5) Verify mode. If the data has been written, proceed to (7), if not, repeat steps (3) to (5). If the data cannot be correctly written in 25 attempts, go to step (6).
- (6) Classify the PROM as defective and cease write operation.
- (7) Provide write data and supply (for additional writing) program pulses for 3 ms times the number of repeats performed between steps (3) to (5).
- (8) Increment the address.
- (9) Repeat steps (3) to (8) until the end address is reached.

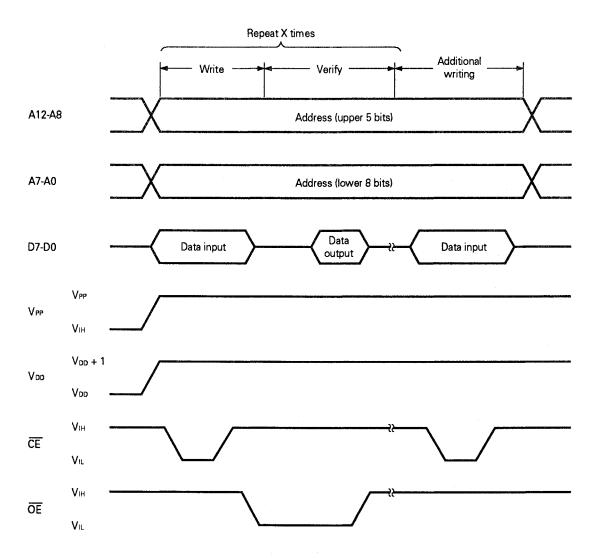


Fig. 3-1 PROM Write/Verify Timing

3.3 PROM READ PROCEDURE

The contents of the PROM can be read out to the external data bus (D0-D7) using the following procedure.

- (1) Process the unused pins in accordance with the description in Pin Configuration.
- (2) Supply +5 V to the VDD pin and VPP pin, and +12.5 V to the PROG pin.
- (3) Input the address of the data to be read to the A0 to A12 pins.
- (4) Read mode.
- (5) Data is output to the D0 to D7 pins.

Fig. 3-2 shows the timing for this sequence from steps (2) to (5).

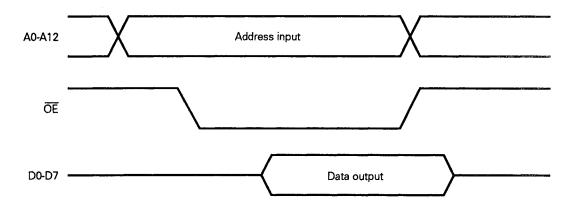


Fig. 3-2 PROM Read Timing

3.4 ERASING PROCEDURE (EPROM PRODUCT ONLY)

Data on the μ PD78P312ADW/R EPROM can be erased by exposing the EPROM to light with a wavelength shorter than 400 nm. Therefore, if the EPROM is exposed to direct sunlight or the light of a fluorescent lamp for a long time, the data on the EPROM may be erased. To protect the data, mask the EPROM window with a light baffle film, which is attached as an accessory.

Usually, cast a 254 nm ultraviolet ray onto the window of the EPROM to erase the memory contents. To completely erase the EPROM contents, a minimum of 15 W·s/cm² (strength of the ultraviolet light x erase time) of exposure is necessary. This means that, when a 12,000 μ W/cm² ultraviolet lamp is used, about 15 to 20 minutes are required to completely erase the EPROM contents. The time required to erase the EPROM contents, however, may be lengthened if the file of the ultraviolet lamp used is ending, or if the window of the EPROM is soiled. The distance between the ultraviolet lamp and the window should be 2.5 cm or shorter.

3.5 SCREENING OF ONE-TIME PROM PRODUCTS

One-time PROM products (µPD78P312ACW, 78P312AGF-3BE, 78P312AGQ-36, and 78P312AL) cannot be completely tested by NEC before shipment. It is recommended that screening be implemented under the following conditions to verify the PROM after the necessary data has been written:

Storage Temperature	Storage Time
125°C	24 hours

NEC offers changed services including writing, printing, screening, and verifying one-time PROMs by the device called a QTOP microcomputer. For details, consult NEC.

4. ELECTRICAL CHARACTERISTICS

Absolute Maximum Rating (Ta = 25°C)

ltem	Symbol	Conditions	Rating	Units
	Voo		-0.5 to +7.0	٧
3	AVREF		-0.5 to Voo+0.3	٧
Power supply voltage	AVss		-0.5 to +0.5	٧
	VDD	٧		
	Vn	Other than RESET	-0.5 to Vpp+0.5	٧
Input voltage	V ₁₂	RESET	-0.5 to +13.5	٧
Output voltage	Vo		-0.5 to Van+0.5	٧
1 1		Single pin	4.0	mA
Low level output current	IOL	All output pins total	60	mA
		Single pin	-2	mA
High level output current	Іон	All output pins total	-15	mA
Operating temperature	Topt		-10 to +70	°C
Storage temperature	Tatg		-65 to +150	°C

Operating Condition

Item Oscillation frequency	Та	Voo
4 MHz ≤ fxx ≤ 12 MHz	-10 to +70°C	+5.0 V ±10%

Capacitance (Ta = 25°C, V_{DD} = Vss = 0 V)

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Input capacitance	Cı				10	рF
Output capacitance	Со	f = 1 MHz Pin not used for measurement is 0 V			20	рF
Input/Output capacitance	Cıo				20	pF

Oscillator Characteristics (Ta = -10 to +70°C, VDD = +5.0 V \pm 10%, Vss = AVss = 0 V, 4 V \leq AVREF \leq VDD)

Oscillator	Recommended circuit	ltem	MIN.	MAX.	Units
Ceramic oscillator or crystal resonator	X1 X2 C1	Oscillation frequency (fxx)	4	12	MHz
	X1 X2	X1 input frequency (fx)	4	12	MHz
External clock		X1 input rise, fall time (txn, txr)	o	30	ns
	HCMOS inverter	X1 input high/low level width (twxH, twxL)	30		ns

Notes 1: Oscillator circuit must be located as close as possible to the X1 and X2 pins.

2: To prevent noise from affecting operation, avoid locating other signal lines within portion enclosed in dotted line.

Recommended Oscillator Circuit Constants

Ceramic oscillator

		Frequency	External capacitance [pF]			
Manufacturer	Product name	(MHz)	C1	C2		
	CSA8.00MT	8.0				
	CSA10.0MT	10.0	30	30		
	CSA12.0MT	12.0				
Murata Mfg.	CST8.00MT	8.0				
	CST10.0MT	10.0	Internal	Internal		
	CST12.0MT	12.0				
	KBR-8.0M	8.0				
Kyocera	KBR-10.0M	10.0	33	33		
	KBR-12.0M	12.0				
	FCR10.0MC	10.0				
TDK	FCR12.0MC	12.0	Internal	Internal		

Crystal resonator

Manufacturer	Product name	Frequency	External capacitance [pF]		
Manufacturer	Froduct name	[MHz] C1	C2		
Kinseki	HC-49U	8.0 10.0 12.0	22	22	

DC Characteristics (Ta = -10°C to +70°C, V_{DD} = +5.0 V \pm 10%, Vss = 0 V)

ltem	Symbol		Conditions	MIN.	TYP.	MAX.	Units
Low level	VIL1	Other than EA		0		0.8	V
input voltage	VIL2	EA		0		0.5	٧
	ViH1	Except the P20/	NMI, X1, X2, RESET pins	2.2		Voo	V
High level input voltage	V _{1H2}	P20/NMI, X1, X2	RESET pins	3.8		Voo	٧
Low level output voltage	Vor	loL = 2.0 mA		11.52	0.45	٧	
High level output voltage	Voн	lон = -1.0 mA		V _{DD} -1.0			٧
Input current	l ₁	P20/NMI, RESET	0.45 V < V1 < VDD			±10	μА
Input leakage current	lu					±10	μΑ
Input/output leakage current	lro					±10	μΑ
AVREF current	Alref	fclk = 6 MHz			1.5	5	mA
V _{DD} power supply	I _{DD1}	Operating mode	e, fclk = 6 MHz		30	60	mA
current	IDD2	HALT mode, fcu	c = 6 MHz		5	15	mA
Data retention voltage	VDDDR	STOP mode		2.5			V
5		STOP mode	VDDDR = 2.5 V		3	15	μА
Data retention current	IDDDR	STUP mode	VDDDR = 5.0 V ±10%		10	50	μΑ

AC Characteristics

Read/Write operation (Ta =-10°C to +70°C, $VDD = +5 \text{ V} \pm 10\%$, Vss = 0 V)

Item	Symbol	Conditions	MIN.	MAX.	Units
Internal system clock cycle time *1	tcyk		166	1000	ns
Address set up time (vs. ALE ↓)	tsal.		150		ns
Address hold time (vs. ALE ↓)	thla		30		ns
Address → RD ↓ delay time	toar		233		ns
$\overrightarrow{RD}\ \downarrow \ o$ address float time	tera			0	ns
Address → data input time	toaid			413	ns
ALE ↓ → data input time	t oLio			233	ns
RD ↓ → data input time	torio			180	ns
ALE $\downarrow \rightarrow \overline{RD} \downarrow$ delay time	tous		63		ns
Data hold time (vs. \overline{RD} \uparrow)	THRID		0		ns
RD ↑ → address active time	tora		53		ns
RD ↑ → ALE ↑ delay time	tonu		116		ns
RD low level width	twal		200		ns
ALE high level width	twlh		126		ns
Address → WR ↓ delay time	toaw		233		ns
ALE ↓ → data output time	tolod			193	ns
$\overline{ m WR}\downarrow ightarrow$ data output time	towod			100	ns
			63		ns
ALE ↓ → WR ↓ delay time *2	tolw	Refresh mode	116		ns
Data set up time (vs. WR ↑)	tsopwr		150		ns
Data set up time (vs. WR ↓) *3	tsodwr	Refresh mode	33		ทร
Data hold time (vs. WR 1)	tнwop		20		ns
WR ↑ → ALE ↑ delay time	towL	34910	116		ns
WR low level width	twwL		200		ns

^{*1:} The internal system clock (fclk) is the oscillation clock (fxx) divided by 2 or 8, depending on the STBC register specification. The value in this table is indicated as fxx = 12 MHz and fclk = fxx/2.

Remarks: This table shows the characteristics when the number of weight cycles is 0.

^{*2:} During pulse refresh operation, the falling edge of the WR signal is delayed by a half clock. Therefore, the value in the lower row is used as the value of tolw.

^{*3:} When accessing a pseudo-static RAM (μPD428128 etc.) from which the data is clocked in at the falling edge of the WR signal, the data set up time is not tsopws, but tsopws.

Serial Operation (Ta = -10°C to +70°C, V_{DD} = +5.0 V \pm 10%, Vss = 0 V)

ltem	Symbol		Conditions		MIN.	MAX.	Units
		Outmut	SCK	*1	1.33		μs
Serial clock cycle time	tcysk	Output	стѕ	*2	1.33	210	μs
4		Input	CTS	*3	1		μs
		0	SCK	*1	580		ns
Serial clock low level width	twskL	Output	CTS	*2	580		ns
		Input	CTS	*3	420		ns
		0	SCK	*1	580		ns
Serial clock high level width	twskH	Output	стѕ	*2	580		ns
		Input	CTS	*3	420		ns
	twcsH,			*4	•		_
CTS high, low level width	twcsL				3		tcyk
RxD set up time (vs. CTS ↑)	tsrxsk				80		ns
RxD hold time (vs. CTS 1)	thskrx				80		ns
$\overline{SCK} \downarrow \to TxD$ delay time	tosktx					210	ns

- *1: When transmitting at 750 kbps in the I/O interface mode.
- *2: When receiving at 750 kbps in the I/O interface mode.
- *3: When receiving at 1 Mbps in the I/O interface mode.
- *4: In the asynchronous mode.

A/D Converter Characteristics (Ta = -10°C to +70°C, VDD = +5 V \pm 10%, 4 V \leq AVREF \leq VDD, AVss = Vss = 0 V)

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Resolution			8			bit
Over all error *		4.0 V ≤ AVREF ≤ VDD, 166 ns ≤ tcyk ≤ 500 ns			0.4	%
Quantified error					±1/2	LSB
		166 ns ≤ tcvk ≤ 250 ns	180			tcyk
Conversion time	tconv	250 ns ≤ tcyk ≤ 500 ns	120			tcyk
- "		166 ns ≤ tcyk ≤ 250 ns	36			tcyk
Sampling time	TSAMP	250 ns ≤ tcγκ ≤ 500 ns	0, 166 ns ≤ tcγκ ≤ 500 ns 180 180 1 ns 120 1 ns 24 -0.3 AVREF+0.3 1000	tcvk		
Analog input	VIAN		-0.3		AVREF+0.3	٧
Analog input impedance	RAN			1000		МΩ
Reference voltage	AVREF		4		Voo	٧
AV _{REF} current	Aires	fclk = 6 MHz		1.5	5.0	mA

^{*:} Not including any quantified errors. Expressed as a percentage of the full-scale value.

Count Unit Operation (Ta = -10°C to +70°C, V_{DD} = +5.0 V ±10%, V_{SS} = 0 V)

ltem	Symbol	Conditions	MIN.	MAX.	Units
CIO, CI1 high, low level width	twoih,		3		tcyk
CTRL0, CTRL1 high, low level width	twcтн,		3		tcvk
CTRL0, CTRL1 set up time (vs. Cl ↑)	tscrcı	When the operation mode of the count unit is specified as mode 3, and the CI pin input to the rising edge is effective	2		tсук
CTRL0, CTRL1 hold time (vs. Cl 1)	tнсіст	When the operation mode of the count unit is specified as mode 3, and the CI pin input to the rising edge is effective	5		tcyx
CLR0, CLR1 high, low level width	twcnh,		3	-	tcyk
CIO, CI1 set up time (vs. Ci 1)	ts4cтci	With the operation mode of the count unit is specified as mode 4	6		tcyk
Cl0, Cl1 hold time (vs. Cl ↑)	Т н4СІСТ	With the operation mode of the count unit is specified as mode 4	6		tcyk
Ci0, Ci1, CTRL0, CTRL1 cycle time	tcyc4	With the operation mode of the count unit is specified as mode 4	4		μs

Other Operation (Ta = -10°C to +70°C, V_{DD} = +5.0 V ±10%, V_{SS} = 0 V)

Item	Symbol	Conditions	MIN.	MAX.	Units
NMI high, low level width	twnih,		10		116
	twniL		10		μs
NTE0 high, low level width	twюн,		3	-	tcyk
	twioL				LUIK
INTE1 high, low level width	twiiн,		3		tcyk
	twi1L				
INTE2 high, low level width	twi2н,		3		tcyk
	twi2L				
RESET high, low level width	twash,		10		μs
	twrsL				
Voo rise time (using SBF bit)	trovo		4		ms
Vod rise, fall time	tevo,		200		μs
	trvo				~~

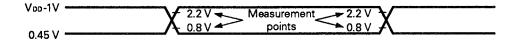
External Clock Timing (Ta = -10°C to +70°C, V_{DD} = +5.0 $V \pm 10\%$, V_{SS} = 0 V)

Item	Symbol	Conditions	MIN.	MAX.	Units
X1 input high level width	twxн	*	30	130	ns
X1 input low level width	twxL		30	130	ns
X1 input rise time	txn		0	30	ns
X1 input fall time	txF		0	30	ns
X1 input cycle time	tcyx		83	250	ns

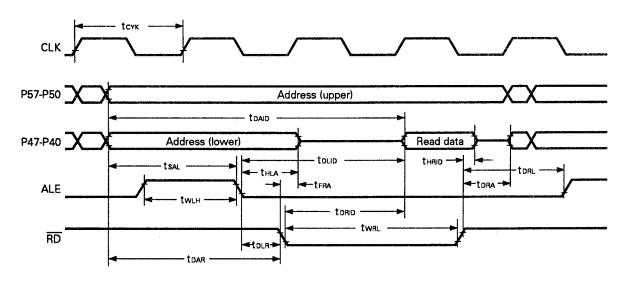
Definition of Bus Timing Depending on toxk

ltem	Calculation formula	MIN./MAX.	Units
tsal	1.5T - 100	MIN.	ns
tdar	2T - 100	MIN.	ns
toaid	(3.5 + n)T - 170	MAX.	ns
toLib	(2 + n)T - 100	MAX.	ns
torio	(1.5 + n)T - 70	MAX.	ns
tolr	0.5T - 20	MIN.	ns
TORL	T - 50	MIN.	ns
TORA	0.5T - 30	MIN.	ns
twal	(1.5 + n)T - 50	MIN.	ns
twlH	T - 40	MIN.	ns
toaw	2T - 100	MIN.	ns
tolod	0.5T + 110	MAX.	ns
	0.5T - 20 (Normal operation)	MIN.	ns
toLw	T - 50 (Refresh mode)	MIN.	ns
tsoowr	(1.5 + n)T - 100	MIN.	ns
tsoowf	0.5T - 50	MIN.	ns
towl	T - 50	MIN.	ns
	(1.5 + n)T - 50 (Normal operation)	MIN.	ns
twwL	(1 + n)T - 50 (Refresh mode)	MIN.	ns

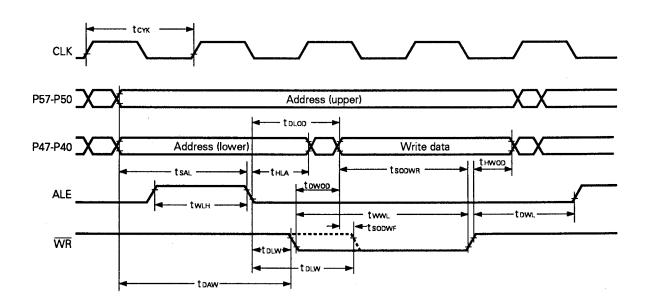
Remarks 1: n is the number of WAIT states inserted by the specification in the MM register.


2: T = tcyk = 1/fclk (fclk is the internal system clock frequency)

3: Items not shown in this table do not depend on the frequency of the internal system clock (fclk).

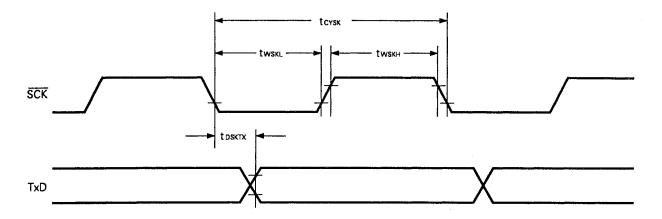


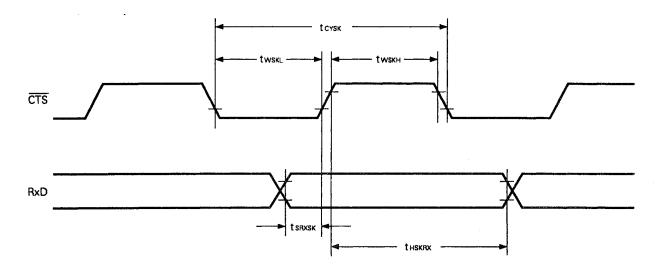
AC Timing Measurement Position



Timing Wave-Forms

Read operation:


Write operation:

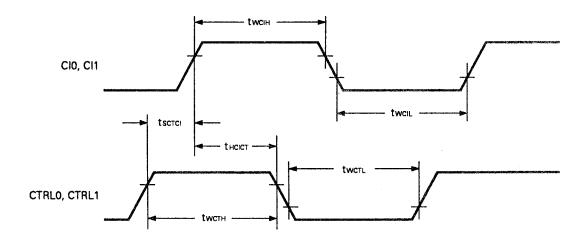


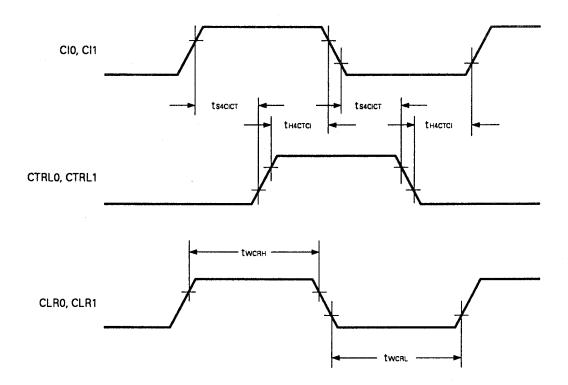
Serial Operation:


Transmission in I/O interface mode:

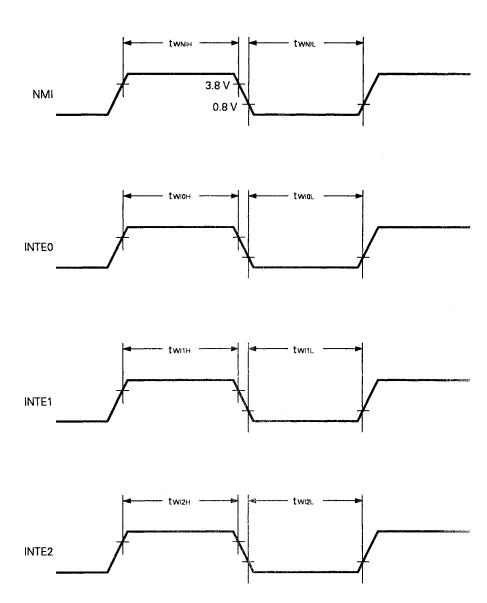
Receive in I/O interface mode:

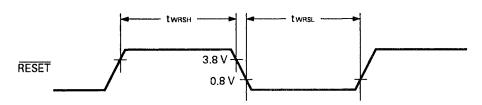
Transmit enable input timing (asynchronous mode):

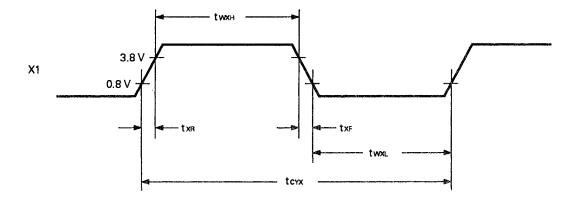


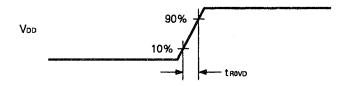


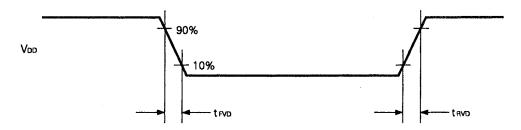
Count Unit Input Timing


Mode 3 operation


Mode 4 operation


Interrupt Input Timing


Reset Input Timing


External Clock Timing

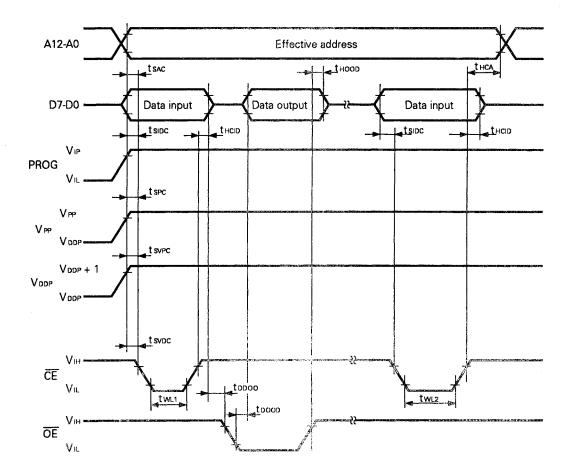
Power On Timing

Data Retention Timing

DC Programming Characteristics (Ta = 25 $\pm 5^{\circ}$ C, V_{IP} = 12.0 ± 0.5 V, Vss = 0 V)

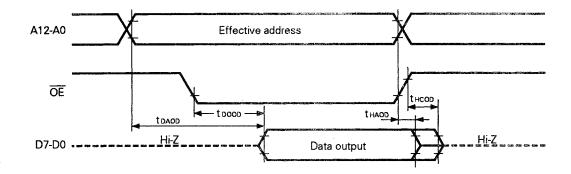
ltem	Symbol	Symbol*	Conditions	MIN.	TYP.	MAX.	Units
High level input voltage	ViH	ViH		2.2		V _{DDP} +0.3	V
Low level input voltage	VIL	VIL		-0.3		0.8	٧
Input leakage current	LIP	lu	0 ≤ V1 ≤ VDDP			10	μΑ
High level output voltage	Vон	Vон	loн = -1.0 mA	Vpp-1			V
Low level output voltage	Vol	Vol	lot = 2.0 mA			0.45	V
Output leakage current	ILO	-	0 ≤ Vo ≤ VDDP, OE = VIH			10	μΑ
PROG pin high voltage input current	lip	-				±10	μА
V _{DDP} power supply voltage V _{DDP}	Veen	Vop	Program memory write mode	5.75	6.0	6.25	V
	V DOP	4 00	Program memory read mode	4.5	5.0	5.5	V
V	VPP	Vpp	Program memory write mode	12.2	12.5	12.8	V
V _{PP} power supply voltage	VPP	VPP	Program memory read mode		/PP = VDE)P	V
		lop	Program memory write mode		10	30	mA
V _{DDP} power supply current	loo		Program memory read mode CE = Vil., Vi = Viн		10	30	mA
V _{PP} power supply current	Ірр	Ірр	Program memory write mode CE = VIL, OE = VIH		10	30	mA
		-	Program memory read mode		1	100	μА

^{*:} Corresponding symbols in the μ PD27C256A.


AC Programming Characteristics (Ta = 25 $\pm 5^{\circ}$ C, V_{IP} = 12.0 ± 0.5 V, Vss = 0 V)

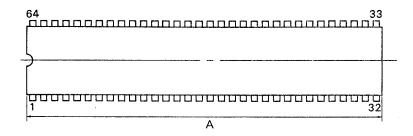
ltem	Symbol	Symbol*	Conditions	MIN.	TYP.	MAX.	Units
Address set up time_ (vs. CE ↓)	tsac	tas		2			μs
Data → OE ↓ delay time	topoo	toes		2			μs
Input data set up time (vs. CE 1)	tsioc	tos		2			μs
Address hold time (vs. CE ↑)	THCA	tah		2			με
Input data hold time (vs. CE ↑)	thcid	tон		2		-	μs
Output data hold ti <u>me</u> (vs. OE ↑)	tноор	tor		0		130	ns
V _{PP} set up time (vs. CE ↓)	tsvrc	tvps		2			μs
V _{DOP} set up time (vs. $\overline{\text{CE}}$ ↓)	tsvoc	tvos		2			μs
Initial program pulse width	twL1	tpw		0.95	1.0	1.05	ms
Additional program pulse width	twL2	topw		2.85		78.75	ms
PROG high voltage input set up time (vs. CE ↓)	tspc	-		2			μs
Address → Data output time	toaoo	tacc	ŌĒ = VIL			2	μs
OE ↓ → Data output time	tpoop	toe				1	με
Data hold time (vs. OE ↑)	tнсор	tor		0		130	ns
Data hold time (vs. Address)	THAOD	tон	OE = Vil	0			ns

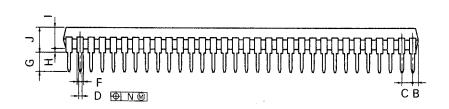
^{*:} Corresponding symbols in the μ PD27C256A.

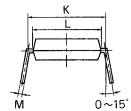


PROM Write Mode Timing

- Notes 1: VDDP must applied before VPP is applied, must be removed after VPP is removed.
 - 2: VPP must not exceed +13 V, including oversheet voltage.


PROM Read Mode Timing

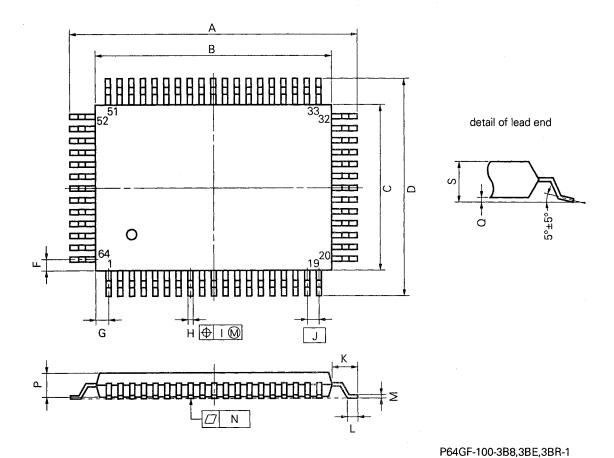




5. EXTERNAL DIMENSIONS

64PIN PLASTIC SHRINK DIP (750 mil)

P64C-70-750A,C


NOTES

- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ^{±0:10}	0.020-0.005
F	0.9 MIN.	0.035 MIN.
G	3.2 ^{±0:3}	0.126 ^{±0.012}
Н	0.51 MIN.	0.020 MIN.
ı	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 -0.05	0.010 -0.003
N	0.17	0.007

64 PIN PLASTIC QFP (14×20)

ITEM

Α

Ρ

Q

S

2.7

 0.1 ± 0.1

3.0 MAX.

NOTE

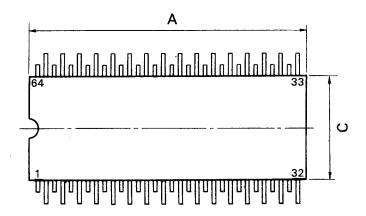
Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

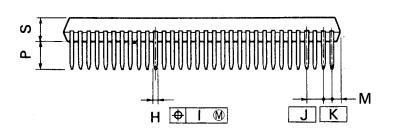
В	20.0±0.2	0.795+0.009
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
H	0.40±0.10	0.016+0.004
ŀ	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.8±0.2	0.071+0.008
L	0.8±0.2	0.031+0.009
М	0.15+0.10	0.006+0.004
N	0.12	0.005

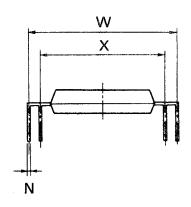
INCHES

0.929±0.016

0.106

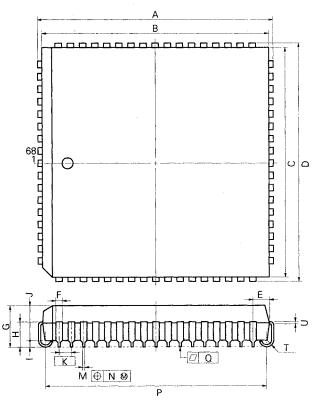

0.004±0.004


0.119 MAX.


MILLIMETERS

23.6±0.4

64 PIN PLASTIC QUIP


P64GQ-100-36

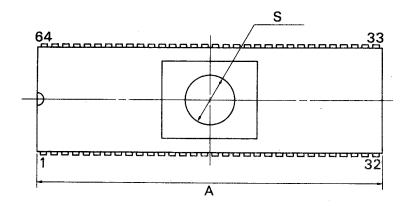
NOTE

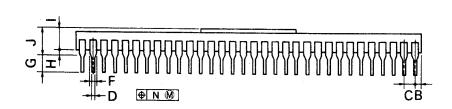
Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

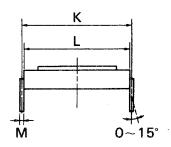
ITEM	MILLIMETERS	INCHES
. A	41.5 ^{+8.3}	1.634 ^{±0.008}
С	16.5	0.650
Н	0.50 ^{±0.10}	0.020-8.884
١.,	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
К	1.27 (T.P.)	0.050 (T.P.)
М	1.1 +0:25	0.043 ^{+8.801}
N	0.25 ^{±8.88}	0.010+8.883
Р	4.0 ^{±0.3}	0.157 + 8.813
S	3.6 ^{±0.1}	0.142 ^{+8.88‡}
W	24.13 ^{±1.05}	0.950 ^{±0.042}
Х	19.05 ^{±1.05}	0.750 ^{±0.042}

68 PIN PLASTIC QFJ (□950 mil)

NOTE

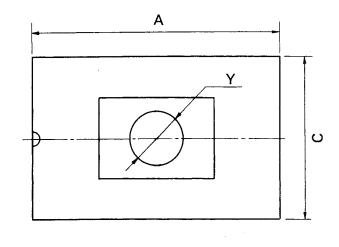

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

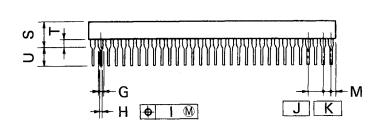

P68L-50A1-2

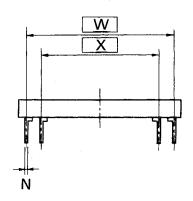

		F 00L-30A1-2
ITEM	MILLIMETERS	INCHES
Α	25.2±0.2	0.992±0.008
В	24.20	0.953
C	24.20	0.953
D	25.2±0.2	0.992±0.008
E	1.94±0.15	0.076+0.007
F	0.6	0.024
G	4.4±0.2	0.173+0.009
Η	2.8±0.2	0.110+0.009
1	0.9 MIN.	0.035 MIN.
J	3.4	0.134
K	1.27 (T.P.)	0.050 (T.P.)
М	0.40±1.0	0.016+0.004
N	0.12	0.005
Р	23.12±0.20	0.910+0.009
۵	0.15	0.006
Т	R 0.8	R 0.031
U	0.20+0.10	0.008+0.004

64PIN CERAMIC SHRINK DIP (750 mil)

P64DW-70-750A


NOTES


- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.310 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.46 ±0.05	0.018 ±0.002
F	0.8 MIN.	0.031 MIN.
G	3.5 ^{±0.3}	0.138 ±0.012
Н	1.0 MIN.	0.039 MIN.
ı	3.0	0.118
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	18.8	0.740
М	0.25 ^{±0.05}	0.010 +0.002
N	0.25	0.01
S	φ 8.89	φ 0.350

64 PIN CERAMIC QUIP (WINDOW)

P64RQ-100-A

NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	41.91 MAX.	1.650 MAX.
С	26.67 ^{±0.4}	1.050 ^{±0.016}
G	0.92 MIN.	0.036 MIN.
Н	0.46 ^{±0.05}	0.018 ^{±0.002}
ı	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
К	1.27 (T.P.)	0.050 (T.P.)
М	1.27 MAX.	0.050 MAX.
N	0.25 ^{±0.05}	0.010+0.003
s	4.72 MAX.	0.186 MAX.
т	1.0 MIN.	0.039 MIN.
U	3.5 ^{±0.3}	0.138-8.813
w	24.13	0.950
х	19.05	0.750
Υ	ϕ 8.89	φ0.350

6. RECOMMENDED SOLDERING CONDITIONS

It is recommended that μ PD78P312A be soldered under the following conditions.

For details on the recommended soldering conditions, refer to Information Document "Semiconductor Devices Mounting Manual" (IEI-616).

The soldering methods and conditions are not listed here, consult NEC.

Table 6-1 Soldering Conditions of Surface Mount Type

 μ PD78P312AGF-3BE: 64-pin plastic QFP (14 x 20 mm)

Soldering Method	Soldering Conditions	Recommended Conditions Reference Code
Infrared Reflow	Package peak temperature: 230°C,	IR30-162-1
	time: 30 seconds max. (210°C min.),	
	number of times: 1, maximum number of days: 2 days*	
	(beyond this period, 16 hours of pre-baking is required at 125°C)	
VPS	Package peak temperature: 215°C,	VP15-162-1
	time: 40 seconds max. (200°C min.),	
	numbr of times: 1, maximum number of days: 2 days*	
	(beyond this period, 16 hours of pre-baking is required at 125°C)	
Pin Partial Heating	Pin temperature: 300°C max.,	
	time: 3 seconds max. (per side)	

^{*:} Number of days after unpacking the dry pack. Storage conditions are 25°C and 65%RH max...

Caution: Do not use two or more soldering methods in combination (except the pin partial hearting method).

Table 6-2 Soldering Conditions of Surface Mount Type

μPD78P312AL: 64-pin plastic QFJ (950 mil)

Soldering Method	Soldering Conditions	Recommended Conditions Reference Code
VPS	Package peak temperature: 215°C, time: 40 seconds max. (200°C), number of times: 1	VP15-00-1
Pin Partial Heating	Pin temperature: 300°C max., time: 3 seconds max. (per side)	_

Caution: Do not use two or more soldering methods in combination (except the pin partial heating method).

*

Table 6-3 Soldering Conditions of Through-Hole Type

μPD78P312ACW:

64-pin plastic shrink DIP (750 mil)

 μ PD78P312AGQ-36: 64-pin plastic QUIP

μPD78P312ADW:

64-pin shrink DIP with Ceramic Window (750 mil)

μPD78P312AR:

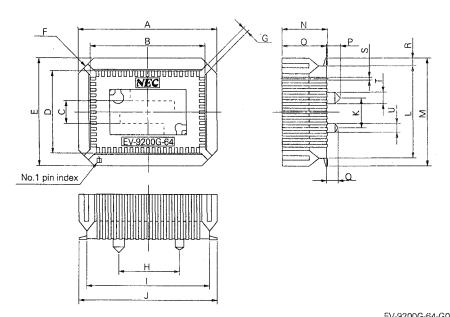
64-pin QUIPwith Ceramic Window

Soldering Method	Soldering Conditions
Wave Soldering (Only for lead part)	Solder bath temperature: 260°C max., time: 10 seconds max.
Pin Partial Heating	Pin temperature: 260°C max., time: 10 seconds max.

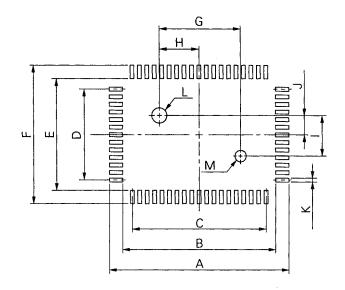
The wave soldering must be performed at the lead part only. Note that the solder must not be directly contacted to the package body.

- Notice -

A model that can be soldered under the more stringent conditions (infrared reflow peak temperature: 235°C, number of times: 2, and an extended number of days) is also available.


For details, consult NEC.

APPENDIX A. DIMENTIONS OF CONVERSION SOCKET AND RECOMMENDED MOUNTING PATTERN


Connect the emulation prove for μ PD78P312AGF-3BE (EP-78310GF) to the target system in conbination with a conversion socket (EV-9200G-64).

The dimensions of the conversion socket and recommended mounting pattern are shown below.

		EV-9200G-64-G0
ITEM	MILLIMETERS	INCHES
Α	25.0	0.984
В	20.30	0.799
С	4.0	0.157
D	14.45	0.569
E	19.0	0.748
F	4-C 2.8	4-C 0.11
G	0.8	0.031
Н	11.0	0.433
ı	22.0	0.866
J	24.7	0.972
К	5.0	0.197
L	16.2	0.638
М	18.9	0.744
0	8.0	0.315
N	7.8	0.307
Р	2.5	0.098
Q	2.0	0.079
R	1.35	0.053
S	0.35±0.1	0.014+0.004
T	ø2.3	ø0.091
U	ø1.5	ø0.059

Fig. A-1 Conversion Socket (EV-9200G-64) (Reference) (Unit: mm)

EV-9200G-64-P0

ITEM	MILLIMETERS	INCHES
Α	25.7	1.012
В	21.0	0.827
С	1.0±0.02 × 18=18.0±0.05	$0.039_{-0.001}^{+0.002} \times 0.709 = 0.709_{-0.003}^{+0.002}$
D	$1.0\pm0.02 \times 12=12.0\pm0.05$	$0.039^{+0.002}_{-0.001} \times 0.472 = 0.472^{+0.003}_{-0.002}$
E	15.2	0.598
F	19.9	0.783
G	11.00±0.08	$0.433^{+0.004}_{-0.003}$
Н	5.50±0.03	$0.217^{+0.001}_{-0.002}$
ı	5.00±0.08	0.197 ^{+0.003} _{-0.004}
J	2.50±0.03	0.098 ^{+0.002}
K	0.6±0.02	$0.024^{+0.001}_{-0.002}$
L	\$\phi_2.36±0.03	φ0.093 ^{+0.001} _{-0.002}
М	Ø1.57±0.03	\$\phi_0.062^{+0.001}_{-0.002}\$

Fig. A-2 Recommended Conversion Socket (EV-9200G-64)

Mounting Pattern (Reference) (Unit: mm)

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are optionally available:

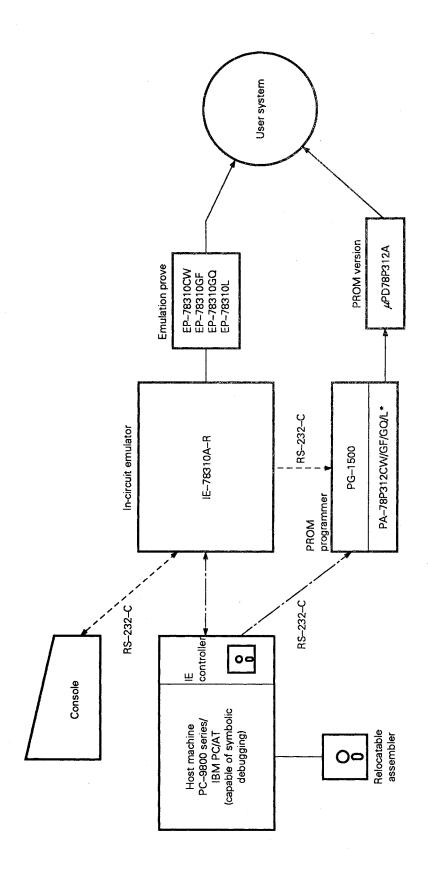
Hardware

IE-78310A-R	This is an in-circuit emulator that can be used for developing and debugging an application system. It is connected to the host system when debugging is performed. Since the in-circuit emulater can transfer object files with the host machine, if enables efficient debugging to be performed.
EP-78310CW EP-78310GF EP-78310GQ EP-78310L	These emulation probes connect IE-78310A-R to the user system.
PG-1500	This is a PROM programmer that can program single-chip microcomputers with PROM in either stand-alone mode or under control of a host machine, when connected to the supplied accessory board and a programmer adapter. It can program typical PROMs from 256 K-bit to 4 M-bit models.
PA-78P312CW PA-78P312GF PA-78P312GQ PA-78P312L	These PROM programmer adapters write programs to the μPD78P312A with a general-purpose PROM programmer such as PG-1500. PA-78P312CW for μPD78P312ACW, 78P312ADW PA-78P312GF for μPD78P312AGF-3BE PA-78P312GQ for μPD78P312AGQ-36, 78P312AR PA-78P312L for μPD78P312AL

Other PROM Programmer

The following PROM Programmer can also be used to program the μ PD78P312A :

Manufacturer	Product Name		
Data I/O Japan	UNISITE		
	2900		
Ando Electric	AF-9704		
	AF-9705		


Software

IE-78310A-R Control Program (IE Controller)	Host Machine	os	Supply Media	Ordering Code (product name)
	PC-9800 series	MS-DOS™	8" 2D *	μS5A1IE78310-P01
			3.5" 2HD	μ S5A13 ΙΕ78310
			5" 2HD	μS5A10IE78310-P01
	IBM PC/AT™	PC DOS™	5" 2HC	μS7B10IE78310
78K/III Series Relocatable Assembler	Host Machine	os	Supply Media	Ordering Code (product name)
	PC-9800 series	MS-DOS	8" 2D *	μS5A1RA78K3
			3.5" 2HD	μ S 5A13RA78K3
			5" 2HD	μ S 5A10RA78K3
	IBM PC/AT	PC DOS	5" 2HC	μ S 7B10RA78K3
PG-1500 Controller	Host Machine	os	Supply Media	Ordering Code (product name)
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13PG1500
			5" 2HD	μS5A10PG1500
	IBM PC/AT	PC DOS	5" 2HC	μS7B10PG1500

•: The 8" 2D model has been superseded by the 5" 2HD or 3.5" 2HD model. If you already have the 8" 2D model, the 5" 2HD model will be supplied for future upgrading.

Remarks: The operation of each software package is guaranteed only with the above host machine and OS.

DEVELOPMENT TOOL CONFIGURATION*

...... : When used with the host machine.

----: When using the IE as a stand-along by connecting it to the console.

*: PA-78P312CW is used for the µPD78P312ACW/DW. PA-78P312GF is used for the µPD78P312AGF-3BE. PA-78P312GO is used for the µPD78P312AGO-36/R. PA-78P312L is used for the µPD78P312AL.

GENERAL NOTES ON CMOS DEVICES

1) STATIC ELECTRICITY (ALL MOS DEVICES)

Exercise care so that MOS devices are not adversely influenced by static electricity while being handled.

The insulation of the gates of the MOS device may be destroyed by a strong static charge. Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case, or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use grounding when assembling the MOS device system. Do not leave the MOS device on a plastic plate and do not touch the pins of the device.

Handle boards on which MOS devices are mounted similarly.

(2) PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)

Fix the input level of CMOS devices.

Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its input pin, intermediate level input may be generated due to noise, and an inrush current may flow through the device, causing the device to malfunction. Therefore, fix the input level of the device by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an output pin (whose timing is not specified), each pin should be connected to Vpp or GND through a resistor.

Refer to "Processing of Unused Pins" in the documents of each devices.

(3) STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)

The initial status of MOS devices is undefined upon power application.

Since the characteristics of an MOS device are determined by the quantity of injection at the molecular level, the initial status of the device is not controlled during the production process. The output status of pins, I/O setting, and register contents upon power application are not guaranteed. However, the items defined for reset operation and mode setting are subject to guarantee after the respective operations have been executed.

When using a device with a reset function, be sure to reset the device after power application.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

QTOP is a trademark of NEC Corporation.

MS-DOS is a trademark of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.