Extended 8-bit Microcontroller with Serial Communication Interfaces

1. Description

The TSC80251G1D products are derivatives of the Temic Microcontroller family based on the extended 8-bit C251 Architecture. This family of products is tailored to 8 -bit microcontroller applications requiring an increased instruction throughput, a reduced operating frequency or a larger addressable memory space. The architecture can provide a significant code size reduction when compiling C programs while fully preserving the legacy of C51 assembly routines.
The TSC80251G1D derivatives are pin-out and software compatible with standard $80 \mathrm{C} 51 / \mathrm{Fx} / \mathrm{Rx}$ with extended on-chip data memory (1 Kbyte RAM) and up
to 256 Kbytes of external code and data. Additionally, the TSC83251G1D provides on-chip code memory (16 Kbytes ROM).

They provide transparent enhancements to Intel's 8xC251Sx family with an additional Synchronous Serial Link Controller (SSLC supporting $\mathrm{I}^{2} \mathrm{C}, \mu$ Wire and SPI protocols), a Keyboard interrupt interface and Power Monitoring and Management features.

TSC80251G1D Mask ROM and ROMless derivatives are optimized both for speed and for low power consumption on a wide voltage range.

Notes:

This Datasheet provides the technical description of the TSC80251G1D derivatives. For further information on the device usage, please request the TSC80251 Programmers' Guide and the TSC80251G1D Design Guide.
For information on the EPROM/OTP devices, please refer to the TSC87251G1A Datasheet.

2. Typical Applications

- ISDN terminals
- High-Speed modems
- PABX (SOHO)
- Networking
- Line cards
- Computer peripherals
- Printers
- Plotters
- Scanners
- Banking machines
- Barcode readers
- Smart cards readers
- High-end digital monitors
- High-end joysticks

Purchase of TEMIC I ${ }^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

3. Features

- Pin-Out and software compatibility with standard 80C51 products and 80C51FA/FB/RA/RB
- Plug-in replacement of Intel's 80C251Sx
- C251 core: Intel's MCS ${ }^{\circledR} 251$ step D compliance
- 83 ns Instruction cycle time @ 24 MHz
- 40-byte Register File
- Registers Accessible as Bytes, Words or Dwords
- Six-stage Instruction Pipeline
- 16-bit Internal Code Fetch
- Enriched C51 Instruction Set
- 16-bit and 32-bit ALU
- Compare and Conditional Jump Instructions
- Expanded Set of Move Instructions
- Linear Addressing
- 1 Kbyte of on-chip RAM
- External memory space (Code/Data) programmable from 64 Kbytes to 256 Kbytes
- TSC83251G1D: 16 Kbytes of on-chip masked ROM (Engineering and fast production with TSC87251G1A OTP/EPROM version)
- TSC80251G1D: ROMless version
- Four 8-bit parallel I/O Ports (Ports 0,1,2 and 3 of the standard 80C51)
- Serial I/O Port: full duplex UART (80C51 compatible) with independent Baud Rate Generator
- SSLC: Synchronous Serial Link Controller
- $\quad I^{2} \mathrm{C}$ multi-master and slave protocols
- μ Wire and SPI master and slave protocols
- Three 16-bit Timers/Counters (Timers 0, 1 and 2 of the standard 80C51)
- EWC: Event and Waveform Controller
- Compatible with Intel's Programmable Counter Array (PCA)
- Common 16-bit Timer/Counter reference with four possible clock sources (Fosc/4, Fosc/12, Timer 1 and external input)
- Five modules with four programmable modes:
- 16-bit software Timer/Counter
- 16-bit Timer/Counter Capture Input and software pulse measurement
- High-speed output and 16-bit software Pulse Width Modulation (PWM)
- 8-bit hardware PWM without overhead
- 16-bit Watchdog Timer/Counter capability
- Secure 14-bit Hardware Watchdog Timer
- Power Monitoring and Management
- Power-Fail reset
- Power-On reset (integrated on the chip)
- Power-Off flag (cold and warm resets)
- Software programmable system clock
- Idle and Power-Down modes
- Keyboard interrupt interface on Port 1
- Non Maskable Interrupt input (NMI)
- Real-time Wait states inputs (WAIT\#/AWAIT\#)
- On-chip Code Verify with Encryption for Mask ROM versions
- ONCE mode and full speed Real-Time In-Circuit Emulation support (Third Party Vendors)
- High speed versions:
- 16 MHz and 24 MHz
- $5 \mathrm{~V} \pm 10 \%$
- Typical operating current: $34 \mathrm{~mA} @ 24 \mathrm{MHz}$ $23 \mathrm{~mA} @ 16 \mathrm{MHz}$
- Power-Down mode typical current $\leq 2 \mu \mathrm{~A}$
- Low voltage version:
- 2.7 V to 5.5 V
- 12 MHz operation
- Typical operating current: 8 mA @ 3 V
- Power-Down mode typical current $\leq 1 \mu \mathrm{~A}$
- Temperature ranges:
- Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
- Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Option: extended range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- Packages:
- PDIL 40, PLCC 44 and VQFP 44
- Options: known good dice and ceramic packages

4. Block Diagram

Figure 1. TSC80251G1D Block Diagram

5. Pin Description

5.1. Pinout

Figure 2. TSC80251G1D 40-pin DIP package

Figure 3. TSC80251G1D 44-pin PLCC Package

Figure 4. TSC80251G1D 44-pin VQFP Package

Table 1. TSC80251G1D Pin Assignment

DIP	PLCC	VQFP	Name	DIP	PLCC	VQFP	
	1	39	VSS1		23	17	VSS2
1	2	40	P1.0/T2	21	24	18	P2.0/A8
2	3	41	P1.1/T2EX	22	25	19	P2.1/A9
3	4	42	P1.2/ECI	23	26	20	P2.2/A10
4	5	43	P1.3/CEX0	24	27	21	P2.3/A11
5	6	44	P1.4/CEX1/SS\#	25	28	22	P2.4/A12
6	7	1	P1.5/CEX2/MISO	26	29	23	P2.5/A13
7	8	2	P1.6/CEX3/SCL/SCK/WAIT\#	27	30	24	P2.6/A14
8	9	3	P1.7/A17/CEX4/SDA/MOSI/WCLK	28	31	25	P2.7/A15
9	10	4	RST	29	32	26	PSEN\#
10	11	5	P3.0/RXD	30	33	27	ALE
	12	6	AWAIT\#		34	28	NMI
11	13	7	P3.1/TXD	31	35	29	EA\#
12	14	8	P3.2/INT0\#	32	36	30	P0.7/AD7
13	15	9	P3.3/INT1\#	33	37	31	P0.6/AD6
14	16	10	P3.4/T0	34	38	32	P0.5/AD5
15	17	11	P3.5/T1	35	39	33	P0.4/AD4
16	18	12	P3.6/WR\#	36	40	34	P0.3/AD3
17	19	13	P3.7/A16/RD\#	37	41	35	P0.2/AD2
18	20	14	XTAL2	38	42	36	P0.1/AD1
19	21	15	XTAL1	39	43	37	P0.0/AD0
20	22	16	VSS	40	44	38	VDD

5.2. Signals

Table 2. TSC80251G1D Signal Descriptions

Signal Name	Type	Description	Alternate Function
A17	O	18 $^{\text {th }}$ Address Bit Output to memory as 18 th external address bit (A17) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see NO TAG).	P1.7
A16	O	17 ${ }^{\text {th }}$ Address Bit Output to memory as 17 th external address bit (A16) in extended bus applications, depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see NO TAG).	P3.7
A15:8 ${ }^{(1)}$	O	Address Lines Upper address lines for the external bus.	P2.7:0
AD7:0 ${ }^{(1)}$	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0
ALE	O	Address Latch Enable ALE signals the start of an external bus cycle and indicates that valid address information are available onlines A16/A17 and A7:0. An external latch can use ALE to demultiplex the address from address/databus.	
AWAIT\#	I	Real-time Asynchronous Wait States Input When this pin is active (low level), the memory cycle is stretched until it becomes high. When using the TSC80251G1D as a pin-for-pin replacement for a 8 xC 51 product, AWAIT\# can be unconnected without loss of compatibility or power consumption increase (on-chip pull-up). Not available on DIP package.	
CEX4:0	O	PCA Input/Output pins CEXx are input signals for the PCA capture mode and output signals for the PCA compare and PWM modes.	P1.7:3
EA\#	I	External Access Enable EA\# directs program memory accesses to on-chip or off-chip code memory. For EA\#= 0, all program memory accesses are off-chip. For EA\#= 1, an access is on-chip ROM if the address is within the range of the on-chip ROM; otherwise the access is off-chip. The value of EA\# is latched at reset. For devices without ROM on-chip, EA\# must be strapped to ground.	
ECI	O	PCA External Clock input ECI is the external clock input to the 16-bit PCA timer.	P1.2
MISO	I/O	SPI Master Input Slave Output line When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.	P1.5
MOSI	I/O	SPI Master Output Slave Input line When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller.	P1.7
INT1:0\#	I	External Interrupts 0 and 1. INT1\#/INT0\# inputs set IE1:0 in the TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0 are set by a falling edge on INT1\#/INT0\#. If bits IT1:0 are cleared, bits IE1:0 are set by a low level on INT1\#/INT0\#	P3.3:2
NMI	I	Non Maskable Interrupt Holding this pin high for 24 oscillator periods triggers an interrupt. When using the TSC80251G1D as a pin-for-pin replacement for a 8 xC 51 product, NMI can be unconnected without loss of compatibility or power consumption increase (on-chip pulldown). Not available on DIP package.	
P0.0:7	I/O	Port 0 P 0 is an 8-bit open-drain bidirectional I/O port.	AD7:0

Signal Name	Type	Description	Alternate Function
P1.0:7	I/O	Port 1 P1 is an 8-bit bidirectional I/O port with internal pull-ups. P1 provides interrupt capability for a keyboard interface.	
P2.0:7	I/O	Port 2 P 2 is an 8 -bit bidirectional I/O port with internal pull-ups.	A15:8
P3.0:7	I/O	Port 3 P3 is an 8-bit bidirectional I/O port with internal pull-ups.	
PSEN\#	O	Program Store Enable/Read signal output PSEN\# is asserted for a memory address range that depends on bits RD0 and RD1 in UCONFIG0 byte (see NO TAG).	
RD\#	O	Read or $17^{\text {th }}$ Address Bit (A16) Read signal output to external data memory depending on the values of bits RD0 and RD1 in UCONFIG0 byte (see NO TAG).	P3.7
RST	I	Reset input to the chip Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The Port pins are driven to their reset conditions when a voltage greater than $\mathrm{V}_{\mathrm{IH} 1}$ is applied, whether or not the oscillator is running. This pin has an internal pull-down resistor which allows the device to be reset by connecting a capacitor between this pin and VDD. Asserting RST when the chip is in Idle mode or Power-Down mode returns the chip to normal operation.	
RXD	I/O	Receive Serial Data RXD sends and receives data in serial I/O mode 0 and receives data in serial modes I/O 1,2 and 3 .	P3.0
SCL	I/O	$\mathbf{I}^{\mathbf{2}} \mathrm{C}$ Serial Clock When $\mathrm{I}^{2} \mathrm{C}$ controller is in master mode, SCL outputs the serial clock to slave peripherals. When $\mathrm{I}^{2} \mathrm{C}$ controller is in slave mode, SCL receives clock from the master controller.	P1.6
SCK	I/O	SPI Serial Clock When SPI is in master mode, SCK outputs clock to the slave peripheral. When SPI is in slave mode, SCK receives clock from the master controller.	P1.6
SDA	I/O	$\mathbf{I}^{\mathbf{2}} \mathbf{C}$ Serial Data SDA is the bidirectional $\mathrm{I}^{2} \mathrm{C}$ data line.	P1.7
SS\#	I	SPI Slave Select Input When in Slave mode, SS\# enables the slave mode.	P1.4
T1:0	I/O	Timer 1:0 External Clock Inputs When timer 1:0 operates as a counter, a falling edge on the T1:0 pin increments the count.	
T2	I/O	Timer 2 Clock Input/Output For the timer 2 capture mode, T2 is the external clock input. For the Timer 2 clock-out mode, T2 is the clock output.	P1.0
T2EX	I	Timer 2 External Input In timer 2 capture mode, a falling edge initiates a capture of the timer 2 registers. In auto-reload mode, a falling edge causes the timer 2 register to be reloaded. In the up-down counter mode, this signal determines the count direction: $1=$ up, $0=$ down.	P1.1
TXD	I/O	Transmit Serial Data TXD outputs the shift clock in serial I/O mode 0 and transmits data in serial I/O modes 1,2 and 3 .	P3.1
VDD	PWR	Digital Supply Voltage Connect this pin to +5 V or +3 V supply voltage.	
VSS	GND	Circuit Ground Connect this pin to ground.	

Signal Name	Type	Description	Alternate Function
VSS1	GND	Secondary Ground 1 This ground is provided to reduce ground bounce and improve power supply bypassing. Connection of this pin to ground is recommended. However, when using the TSC80251G1D as a pin-for-pin replacement for a $8 \mathrm{xC51}$ product, VSS1 can be unconnected without loss of compatibility. Not available on DIP package.	
VSS2	GND	Secondary Ground 2 This ground is provided to reduce ground bounce and improve power supply bypassing. Connection of this pin to ground is recommended. However, when using the TSC80251G1D as a pin-for-pin replacement for a $8 \mathrm{xC51}$ product, VSS2 can be unconnected without loss of compatibility. Not available on DIP package.	
WAIT\#	I	Real-time Synchronous Wait States Input The real-time WAIT\# input is enabled by setting RTWE bit in WCON (S:A7h). During bus cycles, the external memory system can signal 'system ready' to the microcontroller in real time by controlling the WAIT\# input signal.	P1.6
WCLK	O	Wait Clock Output The real-time WCLK output is enabled by setting RTWCE bit in WCON (S:A7h). When enabled, the WCLK output produces a square wave signal with a period of one half the oscillator frequency.	P1.7
WR\#	O	Write Write signal output to external memory.	P3.6
XTAL1	I	Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin. XTAL1 is the clock source for internal timing.	
XTAL2	O	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, leave XTAL2 unconnected.	

Note:

1. The description of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the non-page mode chip configuration. If the chip is configured in page mode operation, port 0 carries the lower address bits (A7:0) while port 2 carries the upper address bits (A15:8) and the data (D7:0).

6. Address Spaces

The TSC80251G1D implements four different address spaces:

- On-chip ROM program/code memory (not present in ROMless devices)
- On-chip RAM data memory
- Special Function Registers (SFRs)
- Configuration array

6.1. Program/Code Memory

The TSC83251G1D implements 16 Kbytes of on-chip program/code memory. Figure 5 shows the split of the internal and external program/code memory spaces. If EA\# is tied to a high level, the 16-Kbyte on-chip program memory is mapped in the lower part of segment FF: where the C251 core jumps after reset. The rest of the program/code memory space is mapped to the external memory. If EA\# is tied to a low level, the internal program/code memory is not used and all the accesses are directed to the external memory.
For the masked ROM products, the internal program/code is provided in a masked ROM. For the ROMless products, there is no possible internal program/code and EA\# must be tied to a low level.

Figure 5. Program/Code Memory Mapping

[^0]
6.2. Data Memory

The TSC80251G1D implements 1 Kbyte of on-chip data RAM. Figure 6 shows the split of the internal and external data memory spaces. This memory is mapped in the data space just over the 32 bytes of registers area (see TSC80251 Programmers' Guide). Hence, the part of the on-chip RAM located from 20h to FFh is bit addressable. This on-chip RAM is not accessible through the program/code memory space.

For faster computation with the on-chip ROM code of the TSC83251G1D, its upper 8 Kbytes are also mapped in the upper part of the region 00: if the On-Chip Code Memory Map configuration bit is cleared (EMAP\# bit in UCONFIG1 byte, see Figure 8). However, if EA\# is tied to a low level, the TSC80251G1D derivative is running as a ROMless product and the code is actually fetched in the corresponding external memory (i.e. the upper 8 Kbytes of the lower 16 Kbytes of the segment FF:). If EMAP\# bit is set, the on-chip ROM is not accessible through the region 00:.

All the accesses to the portion of the data space with no on-chip memory mapped onto are redirected to the external memory.

Figure 6. Data Memory Mapping

6.3. Special Function Registers

The Special Function Registers (SFRs) of the TSC80251G1D derivatives fall into the categories detailed in Table 3 to Table 11.

SFRs are placed in a reserved on-chip memory region S: which is not represented in the data memory mapping (Figure 6). The relative addresses within S: of these SFRs are provided together with their reset values in Table 12. They are upward compatible with the SFRs of the standard 80C51 and the Intel's 80C251Sx family. In this table, the C251 core registers are in italics and are described in the TSC80251 Programmer's Guide. The other SFRs are described in the TSC80251G1D Design Guide. All the SFRs are bit-addressable using the C251 instruction set.

Table 3. C251 Core SFRs

Mnemonic	Name		Mnemonic	Name
ACC $^{(1)}$	Accumulator		SPH $^{(1)}$	Stack Pointer High - MSB of SPX
B $^{(1)}$	B Register		DPL $^{(1)}$	Data Pointer Low byte - LSB of DPTR
PSW	Program Status Word		DPH $^{(1)}$	Data Pointer High byte - MSB of DPTR
PSW1	Program Status Word 1	DPXL	Data Pointer Extended Low byte of DPX - Region number	
SP $^{(1)}$	Stack Pointer - LSB of SPX			

Note:

1. These SFRs can also be accessed by their corresponding registers in the register file.

Table 4. I/O Port SFRs

Mnemonic	Name		Mnemonic
P 0	Port 0	Name	
P 1 2	Port 2		
	Port 1	P 3	Port 3

Table 5. Timers SFRs

Mnemonic	Name		Mnemonic	Name
TL0	Timer/Counter 0 Low Byte	TMOD	Timer/Counter 0 and 1 Modes	
TH0	Timer/Counter 0 High Byte		T2CON	Timer/Counter 2 Control
TL1	Timer/Counter 1 Low Byte	T2MOD	Timer/Counter 2 Mode	
TH1	Timer/Counter 1 High Byte	RCAP2L	Timer/Counter 2 Reload/Capture Low Byte	
TL2	Timer/Counter 2 Low Byte	RCAP2H	Timer/Counter 2 Reload/Capture High Byte	
TH2	Timer/Counter 2 High Byte	WDTRST	WatchDog Timer Reset	
TCON	Timer/Counter 0 and 1 Control			

Table 6. Serial I/O Port SFRs

Mnemonic	Name		Mnemonic
SCON	Serial Control	Name	
SBUF	Serial Data Buffer	SADDR	Slave Address
SADEN	Slave Address Mask	BRL	Baud Rate Reload
		BDRCON	Baud Rate Control

Table 7. SSLC SFRs

Mnemonic	Name		Mnemonic
	SSCON	Synchronous Serial control	SSADR
SSDAT	Synchronous Serial Data	Synchronous Serial Address	
SSCS	Synchronous Serial Control and Status		Synchronous Serial Bit Rate

Table 8. Event Waveform Control SFRs

Mnemonic	Name	Mnemonic	Name
CCON	EWC-PCA Timer/Counter Control	CCAP1L	EWC-PCA Compare Capture Module 1 Low Register
CMOD	EWC-PCA Timer/Counter Mode	CCAP2L	EWC-PCA Compare Capture Module 2 Low Register
CL	EWC-PCA Timer/Counter Low Register	CCAP3L	EWC-PCA Compare Capture Module 3 Low Register
CH	EWC-PCA Timer/Counter High Register	CCAP4L	EWC-PCA Compare Capture Module 4 Low Register
CCAPM0	EWC-PCA Timer/Counter Mode 0	CCAPOH	EWC-PCA Compare Capture Module 0 High Register
CCAPM1	EWC-PCA Timer/Counter Mode 1	CCAP1H	EWC-PCA Compare Capture Module 1 High Register
CCAPM2	EWC-PCA Timer/Counter Mode 2	CCAP2H	EWC-PCA Compare Capture Module 2 High Register
CCAPM3	EWC-PCA Timer/Counter Mode 3	CCAP3H	EWC-PCA Compare Capture Module 3 High Register
CCAPM4	EWC-PCA Timer/Counter Mode 4	CCAP4H	EWC-PCA Compare Capture Module 4 High Register
CCAP0L	EWC-PCA Compare Capture Module 0 Low Register		

Table 9. System Management SFRs

Mnemonic	Name		Mnemonic
	PCON	Power Control	Name
POWM	Power Management	Clock Reload	
PFILT	Power Filter	WCON	Synchronous Real-Time Wait State Control

Table 10. Interrupt SFRs

Mnemonic	Name		Mnemonic
IE0	Interrupt Enable Control 0	Name	
IE1	Interrupt Priority Control 1	Interrupt Priority Control Low 0	
IPH0	Interrupt Priority Control High 0	IPH1	Interrupt Priority Control High 1

Table 11. Keyboard Interface SFRs

Mnemonic	Name		Mnemonic	Name
P1IE	Port 1 Input Interrupt Enable		P1LS	Port 1 Level Selection
P1F	Port 1 Flag			

Table 12. SFR Addresses and Reset Values

F8h	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	FFh
		$\begin{gathered} \text { CH } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAPOH } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAP1H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAP2H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAP3H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAP4H } \\ 00000000 \end{gathered}$		
F0h	$\begin{gathered} \mathrm{B}^{(1)} \\ 00000000 \end{gathered}$								F7h
E8h		$\begin{gathered} \text { CL } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { CCAPOL } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { CCAP1L } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAP2L } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCAP3L } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { CCAP4L } \\ & 00000000 \end{aligned}$		EFh
E0h	$\begin{gathered} \mathrm{ACC}^{(1)} \\ 00000000 \end{gathered}$								E7h
D8h	$\begin{gathered} \text { CCON } \\ 00 \mathrm{X0} 0000 \end{gathered}$	CMOD 00XX X000	$\begin{aligned} & \text { CCAPM0 } \\ & \text { X000 } 0000 \end{aligned}$	$\begin{aligned} & \text { CCAPM1 } \\ & \text { X000 } 0000 \end{aligned}$	$\begin{aligned} & \text { CCAPM2 } \\ & \text { X000 } 0000 \end{aligned}$	$\begin{gathered} \text { CCAPM3 } \\ \text { X000 } 0000 \end{gathered}$	$\begin{aligned} & \text { CCAPM4 } \\ & \text { X000 } 0000 \end{aligned}$		DFhD7h
D0h	$\begin{gathered} \text { PSW }^{(1)} \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PSW1 }{ }^{(1)} \\ 00000000 \end{gathered}$							
C8hC 0 h	$\begin{gathered} \text { T2CON } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { T2MOD } \\ \text { XXXX XX00 } \end{gathered}$	$\begin{gathered} \text { RCAP2L } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { RCAP2H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TL2 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH2 } \\ 00000000 \end{gathered}$			CFh
									C7h
B8h	$\begin{gathered} \text { IPL0 } \\ \text { X000 } 0000 \end{gathered}$	$\begin{aligned} & \text { SADEN } \\ & 00000000 \end{aligned}$					$\begin{gathered} \mathrm{SPH}^{(1)} \\ 00000000 \end{gathered}$		BFh
B0h	$\begin{gathered} \text { P3 } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { IE1 } \\ \text { XX0X XXX0 } \end{gathered}$	$\begin{gathered} \text { IPL1 } \\ \text { XX0X XXX0 } \end{gathered}$	$\begin{gathered} \text { IPH1 } \\ \text { XX0X XXX0 } \end{gathered}$				$\begin{gathered} \text { IPH0 } \\ \text { X000 } 0000 \end{gathered}$	B7h
A8h	$\begin{gathered} \text { IE0 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SADDR } \\ 00000000 \end{gathered}$							AFh
A0h	$\begin{gathered} \hline \text { P2 } \\ 11111111 \end{gathered}$						WDTRST 11111111	WCON XXXX XX00	A7h
98h	$\begin{gathered} \text { SCON } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SBUF } \\ \text { XXXX XXXX } \end{gathered}$	BRL 00000000	$\begin{gathered} \text { BDRCON } \\ \text { XXX0 } 0000 \end{gathered}$	$\begin{gathered} \text { P1LS } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { P1IE } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { P1F } \\ 00000000 \end{gathered}$		9Fh
90h	$\begin{gathered} \text { P1 } \\ 11111111 \end{gathered}$		$\begin{gathered} \text { SSBR } \\ 00000000 \end{gathered}$	$\underset{(2)}{\mathrm{SSCON}}$	$\underset{(3)}{\operatorname{SSCS}}$	$\begin{aligned} & \text { SSDAT } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { SSADR } \\ 00000000 \end{gathered}$		97h
88h	$\begin{gathered} \text { TCON } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { TMOD } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { TL0 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TL1 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH0 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TH1 } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { CKRL } \\ & 00001000 \end{aligned}$	$\begin{gathered} \text { POWM } \\ \text { 0XXX 0XXX } \end{gathered}$	8Fh
80h	$\begin{gathered} \text { P0 } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$	$\begin{gathered} \text { DPL }^{(1)} \\ 00000000 \end{gathered}$	$\begin{gathered} \mathrm{DPH}^{(1)} \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DPXL }^{(1)} \\ 00000001 \end{gathered}$		$\begin{gathered} \text { PFILT } \\ \text { XXXX XXXX } \end{gathered}$	$\begin{gathered} \text { PCON } \\ 00000000 \end{gathered}$	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

reserved
Notes:

1. These registers are described in the TSC80251 Programmer's Guide (C251 core registers).
2. In $I^{2} C$ and SPI modes, SSCON is splitted in two separate registers. SSCON reset value is 00000000 in $I^{2} C$ mode and 00000100 in SPI mode.
3. In read and write modes, SSCS is splitted in two separate registers. SSCS reset value is 11111000 in read mode and 00000000 in write mode.

6.4. Configuration Bytes

The TSC80251G1D derivatives provide user design flexibility by configuring certain operating features at device reset. These features fall into the following categories:

- external memory interface (page mode, address bits, programmed wait states and the address range for RD\#, WR\#, and PSEN\#)
- source mode/binary mode opcodes
- selection of bytes stored on the stack by an interrupt
- mapping of the upper portion of on-chip code memory to region 00:

Two user configuration bytes UCONFIG0 (see Figure 7) and UCONFIG1 (see Figure 8) provide the information.
When EA\# is tied to a low level, the configuration bytes are fetched from the external address space. The TSC80251G1D derivatives reserve the top eight bytes of the memory address space (FF:FFF8h-FF:FFFFh) for an external 8-byte configuration array. Only two bytes are actually used: UCONFIG0 at FF:FFF8h and UCONFIG1 at FF:FFF9h.

For the mask ROM devices, configuration information is stored in on-chip memory (see ROM Verifying). When EA\# is tied to a high level, the configuration information is retrieved from the on-chip memory instead of the external address space and there is no restriction in the usage of the external memory.

UCONFIG0

Configuration Byte 0

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$
-	WSA1\#	WSA0\#	XALE\#	RD1	RD0	PAGE\#	SRC

Bit Number	Bit Mnemonic	Description
7	-	Reserved Set this bit when writing to UCONFIG0.
6	WSA1\#	Wait State A bits Select the number of wait states for RD\#, WR\# and PSEN\# signals for external memory accesses (all regions except 01:). WSA1\# WSA0\# Number of wait states
5	WSA0\#	0 0 3 0 1 2 1 0 1 1 1 0
4	XALE\#	Extend ALE bit Clear to extend the duration of the ALE pulse from $\mathrm{T}_{\mathrm{OSC}}$ to $3 \times \mathrm{T}_{\mathrm{OSC}}$. Set to minimize the duration of the ALE pulse to $1 \times \mathrm{T}_{\mathrm{OSC}}$.
3	RD1	Memory Signal Select bits
2	RD0	(see Table 13).
1	PAGE\#	Page Mode Select bit ${ }^{(\mathbf{1})}$ Clear to select the faster page mode with A15:8/D7:0 on Port 2 and A7:0 on Port 0. Set to select the non-page mode ${ }^{(2)}$ with A15:8 on Port 2 and A7:0/D7:0 on Port 0.
0	SRC	Source Mode/Binary Mode Select bit Clear to select the binary mode. Set to select the source mode.

Notes:

1. UCONFIG0 is fetched twice so it can be properly read both in Page or Non-Page modes. If P2.1 is cleared during the first data phase, a page mode configuration is used, otherwise the subsequent fetches are performed in Non-Page mode.
2. This selection provides compatibility with the standard $80 C 51$ hardware which is multiplexing the address LSB and the data on Port 0 .

Figure 7. Configuration Byte 0

UCONFIG1

Configuration Byte 1

7	6	5	4	3	2	1	0
-	-	-	INTR	WSB	WSB1\#	WSB0\#	EMAP\#

Bit Number	Bit Mnemonic	Description
7	-	Reserved Set this bit when writing to UCONFIG1.
6	-	Reserved Set this bit when writing to UCONFIG1.
5	-	Reserved Set this bit when writing to UCONFIG1.
4	INTR	Interrupt Mode bit ${ }^{(\mathbf{1})}$ Clear so that the interrupts push two bytes onto the stack (the two lower bytes of the PC register). Set so that the interrupts push four bytes onto the stack (the three bytes of the PC register and the PSW1 register).
3	WSB	Wait State B bit ${ }^{(\mathbf{2})}$ Clear to generate one wait state for memory region 01:. Set for no wait states for memory region 01 :.
2	WSB1\#	Wait State B bits Select the number of wait states for RD\#, WR\# and PSEN\# signals for external memory accesses (only region 01:). WSB1\# WSB0\# Number of wait states
1	WSB0\#	0 0 3 0 1 2 1 0 1 1 1 0
0	EMAP\#	On-Chip Code Memory Map bit Clear to map the upper 8 Kbytes of on-chip code memory (at FF:2000h-FF:3FFFh) to the data space (at 00:E000h-00:FFFFh). Set not to map the upper 8 Kbytes of on-chip code memory (at FF:2000h-FF:3FFFh) to the data space.

Notes:

1. Two or four bytes are transparently popped according to INTR when using the RETI instruction. INTR must be set if interrupts are used with code executing outside region FF:
2. Use only for Step A compatibility; set this bit when WSB1:0\# are used.

Figure 8. Configuration Byte 1

Table 13. Address Ranges and Usage of RD\#, WR\# and PSEN\# Signals

RD1	RD0	P1.7	P3.7/RD\#	PSEN\#	WR\#	External Memory
0	0	A17	A16	Read signal for all external memory locations	Write signal for all external memory locations	256 Kbytes
0	1	I/O pin	A16	Read signal for all external memory locations	Write signal for all external memory locations	128 Kbytes
1	0	I/O pin	I/O pin	Read signal for all external memory locations	Write signal for all external memory locations	64 Kbytes
1	1	I/O pin	Read signal for regions 00: and 01:	Read signal for regions FE: and FF:	Write signal for all external memory locations	$2 \times 64 \mathrm{Kbytes}{ }^{(1)}$

Note:

1. This selection provides compatibility with the standard $80 C 51$ hardware which has separate external memory spaces for data and code.

7. Instruction Set Summary

This section contains tables that summarize the instruction set. For each instruction there is a short description, its length in bytes, and its execution time in states (one state time is equal to two system clock cycles). There are two concurrent processes limiting the effective instruction throughput:

- Instruction Fetch
- Instruction Execution

Table 20 to Table 34 assume code executing from on-chip memory, then the CPU is fetching 16-bit at a time and this is never limiting the execution speed.
If the code is fetched from external memory, a pre-fetch queue will store instructions ahead of execution to optimize the memory bandwidth usage when slower instructions are executed. However, the effective speed may be limited depending on the average size of instructions (for the considered section of the program flow). The maximum average instruction throughput is provided by Table 14 depending on the external memory configuration (from Page Mode to Non-Page Mode and the maximum number of wait states). If the average size of instructions is not an integer, the maximum effective throughput is found by pondering the number of states for the neighbor integer values.

Table 14. Minimum Number of States per Instruction for given Average Sizes

Average size of Instructions (bytes)	Page Mode (states)	Non-Page Mode (states)				
		1 Wait State	2 Wait States	3 Wait States	4 Wait States	
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30

If the average execution time of the considered instructions is larger than the number of states given by Table 14, this larger value will prevail as the limiting factor. Otherwise, the value from Table 14 must be taken. This is providing a fair estimation of the execution speed but only the actual code execution can provide the final value.

7.1. Notation for Instruction Operands

Table 15 to Table 19 provide Notation for Instruction Operands.
Table 15. Notation for Direct Addressing

Direct Address	Description	C251	C51
dir8	A direct 8 -bit address. This can be a memory address ($00 \mathrm{~h}-7 \mathrm{Fh}$) or a SFR address ($80 \mathrm{~h}-\mathrm{FFh}$). It is a byte (default), word or double word depending on the other operand.	\checkmark	\checkmark
dir16	A 16-bit memory address (00:0000h-00:FFFFh) used in direct addressing.	r	

Table 16. Notation for Immediate Addressing

| Immediate
 Address | | Description | C251 |
| :--- | :--- | :--- | :--- | C51

Table 17. Notation for Bit Addressing

Direct Address	Description	C251	C51
bit51	A directly addressed bit (bit number= 00h-FFh) in memory or an SFR. Bits 00h-7Fh are the 128 bits in byte locations 20h-2Fh in the on-chip RAM. Bits 80h-FFh are the 128 bits in the 16 SFRs with addresses that end in 0h or 8h, S:80h, S:88h, S:90h,..., S:F0h, S:F8h.		
bit	A directly addressed bit in memory locations 00:0020h-00:007Fh or in any defined SFR.	\ddots	

Table 18. Notation for Destination in Control Instructions

Direct Address	Description	C251	C51
rel	A signed (two's complement) 8-bit relative address. The destination is -128 to +127 bytes relative to the next instruction's first byte.	\checkmark	\checkmark
addr11	An 11-bit target address. The target is in the same 2-Kbyte block of memory as the next instruction's first byte.		\checkmark
addr16	A 16-bit target address. The target can be anywhere within the same 64 -Kbyte region as the next instruction's first byte.		\checkmark
addr24	A 24-bit target address. The target can be anywhere within the 16-Mbyte address space.	\checkmark	

Table 19. Notation for Register Operands

Register	Description	C251	C51
@Ri	A memory location (00h-FFh) addressed indirectly via byte registers R0 or R1		\checkmark
$\begin{aligned} & \text { Rn } \\ & \mathrm{n} \end{aligned}$	Byte register R0-R7 of the currently selected register bank Byte register index: $\mathrm{n}=0-7$		\checkmark
Rm Rmd Rms m, md, ms	Byte register R0-R15 of the currently selected register file Destination register Source register Byte register index: $\mathrm{m}, \mathrm{md}, \mathrm{ms}=0-15$	r	
WRj WRjd WRjs @WRj @WRj +dis16 j, jd, js	Word register WR0, WR2, ..., WR30 of the currently selected register file Destination register Source register A memory location (00:0000h-00:FFFFh) addressed indirectly through word register WR0-WR30, is the target address for jump instructions. A memory location (00:0000h-00:FFFFh) addressed indirectly through word register (WR0-WR30) + 16-bit signed (two's complement) displacement value Word register index: j, jd, $\mathrm{j}=0-30$	r	
DRk DRkd DRks @DRk @ DRk +dis16 k, kd, ks	Dword register DR0, DR4, ..., DR28, DR56, DR60 of the currently selected register file Destination register Source register A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register DR0-DR28, DR56 and DR60, is the target address for jump instruction A memory location (00:0000h-FF:FFFFh) addressed indirectly through dword register (DR0-DR28, DR56, DR60) + 16-bit (two's complement) signed displacement value Dword register index: k , kd, ks $=0,4,8 \ldots, 28,56,60$	\checkmark	

7.2. Size and Execution Time for Instruction Families

Table 20. Summary of Add and Subtract Instructions

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. If this instruction addresses an I/O Port (Px, x=0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
3. If this instruction addresses external memory location, add $N+2$ to the number of states (N : number of wait states).
4. If this instruction addresses external memory location, add $2(N+2)$ to the number of states (N : number of wait states).

Table 21. Summary of Increment and Decrement Instructions

Increment Increment Decrement Decrement		INC <dest> INC <dest>, <src> DEC <dest> DEC <dest>, <src>	```dest opnd }\leftarrow\mathrm{ dest opnd +1 dest opnd }\leftarrow\mathrm{ dest opnd + src opnd dest opnd }\leftarrow\mathrm{ dest opnd - 1 dest opnd }\leftarrow\mathrm{ dest opnd - src opnd```			
Mnemonic	<dest>, <src>(1)	Comments		Binary Mode	Source Mode	
			Bytes	States	Bytes	States
$\begin{aligned} & \text { INC } \\ & \text { DEC } \end{aligned}$	A	ACC by 1	1	1	1	1
	Rn	Register by 1	1	1	2	2
	dir8	Direct address (on-chip RAM or SFR) by 1	2	$2^{(2)}$	2	$2^{(2)}$
	@ Ri	Indirect address by 1	1	3	2	4
$\begin{aligned} & \text { INC } \\ & \text { DEC } \end{aligned}$	Rm, \#short	Byte register by 1,2 , or 4	3	2	2	1
	WRj, \#short	Word register by 1,2 , or 4	3	2	2	1
INC	DRk, \#short	Double word register by 1,2 , or 4	3	4	2	3
DEC	DRk, \#short	Double word register by 1,2 , or 4	3	5	2	4
INC	DPTR	Data pointer by 1	1	1	1	1

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. If this instruction addresses an I/O Port (Px, x=0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 22. Summary of Compare Instructions

Notes:

1. If this instruction addresses an I/O Port (Px, x=0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
2. If this instruction addresses external memory location, add $N+2$ to the number of states (N : number of wait states).
3. If this instruction addresses external memory location, add $2(N+2)$ to the number of states (N : number of wait states).

Table 23. Summary of Logical Instructions (1/2)

Logical AND ${ }^{(1)}$		ANL <dest>, <src>	dest opnd \leftarrow dest opnd Λ src opnd			
Logical OR ${ }^{(1)}$		ORL <dest>, <src>	dest opnd \leftarrow dest opnd V src opnd			
Logical Exclus	$\mathrm{OR}^{(1)}$	XRL <dest>, <src>	dest opnd \leftarrow dest opnd \forall src opnd			
Clear ${ }^{(1)}$		CLR A	(A) $\leftarrow 0$			
Complement ${ }^{(1)}$		CPL A	$(\mathrm{A}) \leftarrow \varnothing$ (A$)$			
Rotate Left		RL A	$\begin{aligned} & (\mathrm{A})_{\mathrm{n}+1} \leftarrow(\mathrm{~A})_{\mathrm{n}}, \mathrm{n}=0 . .6 \\ & (\mathrm{~A})_{0} \leftarrow(\mathrm{~A})_{7} \end{aligned}$			
Rotate Left Carry		RLC A	$\begin{aligned} & (\mathrm{A})_{\mathrm{n}+1} \leftarrow(\mathrm{~A})_{\mathrm{n}}, \mathrm{n}=0 . .6 \\ & (\mathrm{CY}) \leftarrow(\mathrm{A})_{7} \\ & (\mathrm{~A})_{0} \leftarrow(\mathrm{CY}) \end{aligned}$			
Rotate Right		RR A	$\begin{aligned} & (\mathrm{A})_{\mathrm{n}-1} \leftarrow(\mathrm{~A})_{\mathrm{n}}, \mathrm{n}=7 . .1 \\ & (\mathrm{~A})_{7} \leftarrow(\mathrm{~A})_{0} \end{aligned}$			
Rotate Right Carry		RRC A	$\begin{aligned} & (\mathrm{A})_{\mathrm{n}-1} \leftarrow(\mathrm{~A})_{\mathrm{n}}, \mathrm{n}=7 . .1 \\ & (\mathrm{CY}) \leftarrow(\mathrm{A})_{0} \\ & (\mathrm{~A})_{7} \leftarrow(\mathrm{CY}) \end{aligned}$			
Mnemonic	<dest>, <src> ${ }^{(2)}$	Comments		Binary Mode	Source Mode	
			Bytes	States	Bytes	States
ANL ORL XRL	A, Rn	register to ACC	1	1	2	2
	A, dir8	Direct address (on-chip RAM or SFR) to ACC	2	$1^{(3)}$	2	$1^{(3)}$
	A, @Ri	Indirect address to ACC	1	2	2	3
	A, \#data	Immediate data to ACC	2	1	2	1
	dir8, A	ACC to direct address	2	$2^{(4)}$	2	$2^{(4)}$
	dir8, \#data	Immediate 8-bit data to direct address	3	$3^{(4)}$	3	$3^{(4)}$
	Rmd, Rms	Byte register to byte register	3	2	2	1
	WRjd, WRjs	Word register to word register	3	3	2	2
	Rm, \#data	Immediate 8-bit data to byte register	4	3	3	2
	WRj, \#data16	Immediate 16-bit data to word register	5	4	4	3
	Rm, dir8	Direct address to byte register	4	$3^{(3)}$	3	$2^{(3)}$
	WRj, dir8	Direct address to word register	4	4	3	3
	Rm, dir16	Direct address (64 K) to byte register	5	$3^{(5)}$	4	$2^{(5)}$
	WRj, dir16	Direct address (64K) to word register	5	$4^{(6)}$	4	$3^{(6)}$
	Rm, @WRj	Indirect address (64K) to byte register	4	$3^{(5)}$	3	$2^{(5)}$
	Rm, @DRk	Indirect address (16M) to byte register	4	$4^{(5)}$	3	$3^{(5)}$
CLR	A	Clear ACC	1	1	1	1
CPL	A	Complement ACC	1	1	1	1
RL	A	Rotate ACC left	1	1	1	1
RLC	A	Rotate ACC left through CY	1	1	1	1
RR	A	Rotate ACC right	1	1	1	1
RRC	A	Rotate ACC right through CY	1	1	1	1

Notes:

1. Logical instructions that affect a bit are in Table 29.
2. A shaded cell denotes an instruction in the C51 Architecture.
3. If this instruction addresses an I/O Port (Px, x=0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. If this instruction addresses an I/O Port ($P x, x=0-3$), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
5. If this instruction addresses external memory location, add $N+2$ to the number of states (N : number of wait states).
6. If this instruction addresses external memory location, add $2(N+2)$ to the number of states (N : number of wait states).

Table 24. Summary of Logical Instructions (2/2)

Shift Left Logical		SLL <dest>				
Shift Right Arithmetic		SRA < dest>				
Shift Right Logical		SRL <dest>				
Swap		SWAP A	$\mathrm{A}_{3: 0} \leftrightarrow \mathrm{~A}_{7: 4}$			
Mnemonic	<dest>, <src>(1)	Comments	Bina	Mode	Sour	Mode
			Bytes	States	Bytes	States
SLL	Rm	Shift byte register left through the MSB	3	2	2	1
	WRj	Shift word register left through the MSB	3	2	2	1
SRA	Rm	Shift byte register right	3	2	2	1
	WRj	Shift word register right	3	2	2	1
SRL	Rm	Shift byte register left	3	2	2	1
	WRj	Shift word register left	3	2	2	1
SWAP	A	Swap nibbles within ACC	1	2	1	2

Note:

1. A shaded cell denotes an instruction in the C51 Architecture.

Table 25. Summary of Multiply, Divide and Decimal-adjust Instructions

Multiply		MUL AB	$\begin{aligned} & (B: A) \leftarrow(A) \times(B) \\ & \text { extended dest opnd } \leftarrow \text { dest opnd } \times \text { src opnd } \end{aligned}$			
		MUL <dest>, <src>				
Divide		DIV AB	(A) \leftarrow Quotient $((\mathrm{A}) /(\mathrm{B}))$ $(\mathrm{B}) \leftarrow$ Remainder $((\mathrm{A}) /(\mathrm{B}))$			
Divide		DIV <dest>, <src>	ext. dest opnd high \leftarrow Quotient (dest opnd/src opnd) ext. dest opnd low \leftarrow Remainder (dest opnd/src opnd)			
Decimal-adjust ACC for Addition (BCD)		DA A	$\begin{aligned} & \text { IF }\left[\left[(\mathrm{A})_{3: 0}>9\right] \vee[(\mathrm{AC})=1]\right] \\ & \text { THEN }(\mathrm{A})_{3: 0} \leftarrow(\mathrm{~A})_{3: 0}+6 \text { !affects CY; } \\ & \text { IF }\left[\left[(\mathrm{A})_{7: 4}>9\right] \vee[(\mathrm{CY})=1]\right] \\ & \text { THEN }(\mathrm{A})_{7: 4} \leftarrow(\mathrm{~A})_{7: 4}+6 \end{aligned}$			
Mnemonic	<dest>, <src>(1)	Comments		Binary Mode	Source Mode	
			Bytes	States	Bytes	States
MUL	AB	Multiply A and B	1	5	1	5
	Rmd, Rms	Multiply byte register and byte register	3	6	2	5
	WRjd, WRjs	Multiply word register and word register	3	12	2	11
DIV	AB	Divide A and B	1	10	1	10
	Rmd, Rms	Divide byte register and byte register	3	11	2	10
	WRjd, WRjs	Divide word register and word register	3	21	2	20
DA	A	Decimal adjust ACC	1	1	1	1

Note:

1. A shaded cell denotes an instruction in the C51 Architecture.

Table 26. Summary of Move Instructions (1/3)

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. Extended memory addressed is in the region specified by DPXL (reset value $=01 \mathrm{~h}$).
3. If this instruction addresses external memory location, add $N+1$ to the number of states (N : number of wait states).
4. If this instruction addresses external memory location, add $N+2$ to the number of states (N : number of wait states).

Table 27. Summary of Move Instructions (2/3)

Move ${ }^{(1)}$		MOV <dest>, <src> de	est opnd \leftarrow src opnd			
Mnemonic	<dest>, <src>(2)	Comments	Binary Mode		Source Mode	
			Bytes	States	Bytes	States
MOV	A, Rn	Register to ACC	1	1	2	2
	A, dir8	Direct address (on-chip RAM or SFR) to ACC	2	$1^{(3)}$	2	$1^{(3)}$
	A, @Ri	Indirect address to ACC	1	2	2	3
	A, \#data	Immediate data to ACC	2	1	2	1
	Rn, A	ACC to register	1	1	2	2
	Rn, dir8	Direct address (on-chip RAM or SFR) to register	2	$1^{(3)}$	3	$2^{(3)}$
	Rn, \#data	Immediate data to register	2	1	3	2
	dir8, A	ACC to direct address	2	$2^{(3)}$	2	$2^{(3)}$
	dir8, Rn	Register to direct address	2	$2^{(3)}$	3	$3^{(3)}$
	dir8, dir8	Direct address to direct address	3	$3^{(4)}$	3	$3{ }^{(4)}$
	dir8, @Ri	Indirect address to direct address	2	$3^{(3)}$	3	$4^{(3)}$
	dir8, \#data	Immediate data to direct address	3	$3^{(3)}$	3	$3^{(3)}$
	@Ri, A	ACC to indirect address	1	3	2	4
	@Ri, dir8	Direct address to indirect address	2	$3^{(3)}$	3	$4^{(3)}$
	@Ri, \#data	Immediate data to indirect address	2	3	3	4
	DPTR, \#data 16	Load Data Pointer with a 16-bit constant	3	2	3	2

Notes:

1. Instructions that move bits are in Table 29.
2. Move instructions from the C51 Architecture.
3. If this instruction addresses an I/O Port (Px, x=0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. Apply note 3 for each dir 8 operand.

Table 28. Summary of Move Instructions (3/3)

Move ${ }^{(1)}$		<dest>, <src> dest	rc opnd			
			Binar	Mode	Sour	Mode
			Bytes	States	Bytes	States
	Rmd, Rms	Byte register to byte register	3	2	2	1
	WRjd, WRjs	Word register to word register	3	2	2	1
	DRkd, DRks	Dword register to dword register	3	3	2	2
	Rm, \#data	Immediate 8-bit data to byte register	4	3	3	2
	WRj, \#data16	Immediate 16-bit data to word register	5	3	4	2
	DRk, \#0data 16	zero-ext 16bit immediate data to dword register	5	5	4	4
	DRk, \#1data 16	one-ext 16bit immediate data to dword register	5	5	4	4
	Rm, dir8	Direct address to byte register	4	$3^{(3)}$	3	$2^{(3)}$
	WRj, dir8	Direct address to word register	4	4	3	3
	DRk, dir8	Direct address to dword register	4	6	3	5
	Rm, dir16	Direct address (64K) to byte register	5	$3^{(4)}$	4	$2^{(4)}$
	WRj, dir 16	Direct address (64K) to word register	5	$4^{(5)}$	4	$3^{(5)}$
	DRk, dir16	Direct address (64K) to dword register	5	$6^{(6)}$	4	$5^{(6)}$
	Rm, @WRj	Indirect address (64 K) to byte register	4	$3^{(4)}$	3	$2^{(4)}$
	Rm, @DRk	Indirect address (16M) to byte register	4	$4^{(4)}$	3	$3^{(4)}$
	WRjd, @WRjs	Indirect address (64K) to word register	4	$4^{(5)}$	3	$3^{(5)}$
	WRj, @DRk	Indirect address (16M) to word register	4	$5^{(5)}$	3	$4^{(5)}$
	dir8, Rm	Byte register to direct address	4	$4^{(3)}$	3	$3^{(3)}$
MOV	dir8, WRj	Word register to direct address	4	5	3	4
	dir8, DRk	Dword register to direct address	4	7	3	6
	dir16, Rm	Byte register to direct address (64K)	5	$4^{(4)}$	4	$3^{(4)}$
	dir16, WRj	Word register to direct address (64K)	5	$5^{(5)}$	4	$4^{(5)}$
	dir16, DRk	Dword register to direct address (64K)	5	$7^{(6)}$	4	$6^{(6)}$
	@WRj, Rm	Byte register to indirect address (64K)	4	$4^{(4)}$	3	$3^{(4)}$
	@ DRk, Rm	Byte register to indirect address (16M)	4	$5{ }^{(4)}$	3	$4^{(4)}$
	@ WRjd, WRjs	Word register to indirect address (64K)	4	$5^{(5)}$	3	$4^{(5)}$
	@ DRk, WRj	Word register to indirect address (16M)	4	$6^{(5)}$	3	$5^{(5)}$
	Rm, @WRj +dis16	Indirect with 16 -bit dis (64 K) to byte register	5	$6^{(4)}$	4	$5{ }^{(4)}$
	WRj, @WRj +dis16	Indirect with 16 -bit dis (64 K) to word register	5	$7{ }^{(5)}$	4	$6^{(5)}$
	Rm, @DRk + dis 24	Indirect with 16-bit dis (16M) to byte register	5	$7{ }^{(4)}$	4	$6^{(4)}$
	WRj, @WRj +dis24	Indirect with 16-bit dis (16M) to word register	5	$8^{(5)}$	4	$7{ }^{(5)}$
	@WRj +dis16, Rm	Byte register to indirect with 16-bit dis (64 K)	5	$6^{(4)}$	4	$5^{(4)}$
	@WRj + dis16, WRj	Word register to indirect with 16-bit dis (64K)	5	$7{ }^{(5)}$	4	$6^{(5)}$
	@ DRk + dis24, Rm	Byte register to indirect with 16-bit dis (16M)	5	$7{ }^{(4)}$	4	$6^{(4)}$
	@ DRk + dis $24, \mathrm{WRj}$	Word register to indirect with 16-bit dis (16M)	5	$8^{(5)}$	4	$7{ }^{(5)}$

Notes:

1. Instructions that move bits are in Table 29.
2. Move instructions unique to the C251 Architecture.
3. If this instruction addresses an I/O Port (Px, x=0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
4. If this instruction addresses external memory location, add $N+2$ to the number of states (N : number of wait states).
5. If this instruction addresses external memory location, add $2(N+1)$ to the number of states (N : number of wait states).
6. If this instruction addresses external memory location, add $4(N+2)$ to the number of states (N : number of wait states)

Table 29. Summary of Bit Instructions

Clear Bit Set Bit Complement Bit AND Carry with Bit AND Carry with Complement of Bit OR Carry with Bit OR Carry with Complement of Bit Move Bit to Carry Move Bit from Carry		CLR <dest> SETB <dest> CPL <dest> ANL CY, <src> ANL CY, /<src> ORLCY, <src> ORL CY, /<src> MOV CY, 〈src> MOV <dest>, CY	dest opnd $\leftarrow 0$ dest opnd $\leftarrow 1$ dest opnd $\leftarrow \varnothing$ bit $(\mathrm{CY}) \leftarrow(\mathrm{CY}) \wedge$ src opnd $(\mathrm{CY}) \leftarrow(\mathrm{CY}) \wedge \varnothing$ src opnd $(\mathrm{CY}) \leftarrow(\mathrm{CY}) \vee$ src opnd $(\mathrm{CY}) \leftarrow(\mathrm{CY}) \vee \varnothing$ src opnd $(\mathrm{CY}) \leftarrow$ src opnd dest opnd $\leftarrow(\mathrm{CY})$			
		Comments	Binar	Mode	Sour	Mode
			Bytes	States	Bytes	States
CLR	CY	Clear carry	1	1	1	1
	bit51	Clear direct bit	2	$2^{(3)}$	2	$2^{(3)}$
	bit	Clear direct bit	4	$4^{(3)}$	3	$3^{(3)}$
SETB	CY	Set carry	1	1	1	1
	bit51	Set direct bit	2	$2^{(3)}$	2	$2^{(3)}$
	bit	Set direct bit	4	$4^{(3)}$	3	$3^{(3)}$
CPL	CY	Complement carry	1	1	1	1
	bit51	Complement direct bit	2	$2^{(3)}$	2	$2^{(3)}$
	bit	Complement direct bit	4	$4^{(3)}$	3	$3^{(3)}$
ANL	CY, bit51	And direct bit to carry	2	$1^{(2)}$	2	$1^{(2)}$
	CY, bit	And direct bit to carry	4	$3^{(2)}$	3	$2^{(2)}$
	CY, /bit51	And complemented direct bit to carry	2	$1^{(2)}$	2	$1^{(2)}$
	CY, /bit	And complemented direct bit to carry	4	$3^{(2)}$	3	$2^{(2)}$
ORL	CY, bit51	Or direct bit to carry	2	$1^{(2)}$	2	$1^{(2)}$
	CY, bit	Or direct bit to carry	4	$3^{(2)}$	3	$2^{(2)}$
	CY, /bit51	Or complemented direct bit to carry	2	$1^{(2)}$	2	$1^{(2)}$
	CY, /bit	Or complemented direct bit to carry	4	$3^{(2)}$	3	$2^{(2)}$
MOV	CY, bit51	Move direct bit to carry	2	$1^{(2)}$	2	$1^{(2)}$
	CY, bit	Move direct bit to carry	4	$3^{(2)}$	3	$2^{(2)}$
	bit51, CY	Move carry to direct bit	2	$2^{(3)}$	2	$2^{(3)}$
	bit, CY	Move carry to direct bit	4	$4^{(3)}$	3	$3^{(3)}$

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. If this instruction addresses an I/O Port (Px, x=0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
3. If this instruction addresses an I/O Port ($P x, x=0-3$), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 30. Summary of Exchange, Push and Pop Instructions

Exchange bytes Exchange Digit Push		XCH A, <src> XCHD A, <src> PUSH <src> POP <dest>	(A) \leftrightarrow src opnd (A) 3:0 \leftrightarrow src opnd 3:0 $(\mathrm{SP}) \leftarrow(\mathrm{SP})+1 ;((\mathrm{SP})) \leftarrow$ src opnd; $(\mathrm{SP}) \leftarrow(\mathrm{SP})+\operatorname{size}($ src opnd $)-1$ $(\mathrm{SP}) \leftarrow(\mathrm{SP})-$ size (dest opnd) +1 ; dest opnd $\leftarrow((\mathrm{SP})) ;(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$			
Push						
Pop		POP <dest>				
Mnemonic	<dest>, <src>(1)	Comments	Bina	Mode	Source Mode	
			Bytes	States	Bytes	States
XCH	A, Rn	ACC and register	1	3	2	4
	A, dir8	ACC and direct address (on-chip RAM or SFR)	2	$3^{(3)}$	2	$3^{(3)}$
	A, @Ri	ACC and indirect address	1	4	2	5
XCHD	A, @Ri	ACC low nibble and indirect address (256 bytes)	1	4	2	5
PUSH	dir8	Push direct address onto stack	2	$2^{(2)}$	2	$2^{(2)}$
	\#data	Push immediate data onto stack	4	4	3	3
	\#data16	Push 16-bit immediate data onto stack	5	5	4	5
	Rm	Push byte register onto stack	3	4	2	3
	WRj	Push word register onto stack	3	5	2	4
	DRk	Push double word register onto stack	3	9	2	8
POP	dir8	Pop direct address (on-chip RAM or SFR) from stack	2	$3^{(2)}$	2	$3^{(2)}$
	Rm	Pop byte register from stack	3	3	2	2
	WRj	Pop word register from stack	3	5	2	4
	DRk	Pop double word register from stack	3	9	2	8

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. If this instruction addresses an I/O Port (Px, x=0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR.
3. If this instruction addresses an I/O Port (Px, x=0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.

Table 31. Summary of Conditional Jump Instructions (1/2)

Jump conditional on status		Jcc rel $(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ size (instr); IF [cc] THEN $(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ rel				
Mnemonic	<dest>, <src>(1)	Comments	$\text { Binary Mode }^{(2)}$		Source Mode ${ }^{(2)}$	
			Bytes	States	Bytes	States
JC	rel	Jump if carry	2	$1 / 4{ }^{(3)}$	2	$1 / 4^{(3)}$
JNC	rel	Jump if not carry	2	$1 / 4{ }^{(3)}$	2	$1 / 4^{(3)}$
JE	rel	Jump if equal	3	$2 / 5^{(3)}$	2	$1 / 4{ }^{(3)}$
JNE	rel	Jump if not equal	3	$2 / 5^{(3)}$	2	$1 / 4{ }^{(3)}$
JG	rel	Jump if greater than	3	$2 / 5^{(3)}$	2	$1 / 4^{(3)}$
JLE	rel	Jump if less than, or equal	3	$2 / 5^{(3)}$	2	$1 / 4{ }^{(3)}$
JSL	rel	Jump if less than (signed)	3	$2 / 5^{(3)}$	2	$1 / 4{ }^{(3)}$
JSLE	rel	Jump if less than, or equal (signed)	3	$2 / 5^{(3)}$	2	$1 / 4{ }^{(3)}$
JSG	rel	Jump if greater than (signed)	3	$2 / 5^{(3)}$	2	$1 / 4{ }^{(3)}$
JSGE	rel	Jump if greater than or equal (signed)	3	$2 / 5^{(3)}$	2	$1 / 4{ }^{(3)}$

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. States are given as jump not-taken/taken.
3. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Table 32. Summary of Conditional Jump Instructions (2/2)

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. States are given as jump not-taken/taken.
3. If this instruction addresses an I/O Port (Px, x=0-3), add 1 to the number of states. Add 2 if it addresses a Peripheral SFR. 4. If this instruction addresses an I/O Port (Px, x=0-3), add 2 to the number of states. Add 3 if it addresses a Peripheral SFR.
4. If this instruction addresses an I/O Port (Px, x=0-3), add 3 to the number of states. Add 5 if it addresses a Peripheral SFR.
5. In internal execution only, add 1 to the number of states of the 'jump taken' if the destination address is internal and odd.

Table 33. Summary of unconditional Jump Instructions

Absolute jump Extended jump Long jump Short jump Jump indirect No operation		AJMP < src>	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 ;(\mathrm{PC})_{10: 0} \leftarrow \text { src opnd } \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+\text { size }(\text { instr }) ;(\mathrm{PC})_{23: 0} \leftarrow \text { src opnd } \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+\text { size }(\text { instr }) ;(\mathrm{PC})_{15: 0} \leftarrow \text { src opnd } \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 ;(\mathrm{PC}) \leftarrow(\mathrm{PC})+\text { rel } \\ & (\mathrm{PC})_{23: 16} \leftarrow \mathrm{FFh} ;(\mathrm{PC})_{15: 0} \leftarrow(\mathrm{~A})+(\mathrm{DPTR}) \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+1 \end{aligned}$			
		EJMP <src>				
		LJMP <src>				
		SJMP rel				
		JMP @ A + DPTR				
		NOP				
Mnemonic	<dest>, <src>(1)	Comments		Binary Mode	Source Mode	
			Bytes	States	Bytes	States
AJMP	addr11	Absolute jump	2	$3^{(2)(3)}$	2	$3^{(2)(3)}$
EJMP	addr24	Extended jump	5	$6^{(2)(4)}$	4	$5^{(2)(4)}$
	@ DRk	Extended jump (indirect)	3	$7{ }^{(2)(4)}$	2	$6^{(2)(4)}$
LJMP	@ WRj	Long jump (indirect)	3	$6^{(2)(4)}$	2	$5^{(2)(4)}$
	addr16	Long jump (direct address)	3	$5^{(2)(4)}$	3	$5^{(2)(4)}$
SJMP	rel	Short jump (relative address)	2	$4^{(2)(4)}$	2	$4^{(2)(4)}$
JMP	@ A +DPTR	Jump indirect relative to the DPTR	1	$5^{(2)(4)}$	1	$5^{(2)(4)}$
NOP		No operation (Jump never)	1	1	1	1

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. In internal execution only, add 1 to the number of states if the destination address is internal and odd.
3. Add 2 to the number of states if the destination address is external.
4. Add 3 to the number of states if the destination address is external.

Table 34. Summary of Call and Return Instructions

Absolute call		ACALL < src>	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+2 ; \text { push }(\mathrm{PC})_{15: 0}$ $(\mathrm{PC})_{10: 0} \leftarrow \mathrm{src}$ opnd			
Extended call		ECALL < src>	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ size (instr); push $(\mathrm{PC})_{23: 0}$; $(\mathrm{PC})_{23: 0} \leftarrow$ src opnd			
Long call		LCALL < src>	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+$ size (instr); push $(\mathrm{PC})_{15: 0}$; (PC) $15: 0 \leftarrow$ src opnd			
Return from subroutine		RET	рор (PC) 15:0			
Extended return from subroutine		ERET	pop (PC) 23:0			
Return from interrupt		RETI	$\begin{aligned} & \text { IF [INTR= 0] THEN pop }(\mathrm{PC})_{15: 0} \\ & \text { IF [INTR= 1] THEN pop }(\text { PC })_{23: 0} ; \text { pop (PSW1) } \end{aligned}$			
Trap interrupt		TRAP	$\begin{aligned} & (\mathrm{PC}) \leftarrow(\mathrm{PC})+\text { size }(\mathrm{instr}) ; \\ & \text { IF }[\text { INTR }=0] \text { THEN push }(\mathrm{PC})_{15: 0} \\ & \text { IF [INTR= 1] THEN push }(\mathrm{PSW} 1) ; \text { push }(\mathrm{PC})_{23: 0} \end{aligned}$			
Mnemonic	<dest>, <src>(1)	Comments		Binary Mode	Source Mode	
			Bytes	States	Bytes	States
ACALL	addr11	Absolute subroutine call	2	$9^{(2)(3)}$	2	$9^{(2)(3)}$
ECALL	@ DRk	Extended subroutine call (indirect)	3	$14^{(2)(3)}$	2	$13^{(2)(3)}$
	addr24	Extended subroutine call	5	$14^{(2)(3)}$	4	$13^{(2)(3)}$
LCALL	@ WRj	Long subroutine call (indirect)	3	$10^{(2)(3)}$	2	$9^{(2)(3)}$
	addr16	Long subroutine call	3	$9^{(2)(3)}$	3	$9^{(2)(3)}$
RET		Return from subroutine	1	$7{ }^{(2)}$	1	$7{ }^{(2)}$
ERET		Extended subroutine return	3	$9^{(2)}$	2	$8^{(2)}$
RETI		Return from interrupt	1	$7{ }^{(2)(4)}$	1	$7^{(2)(4)}$
TRAP		Jump to the trap interrupt vector	2	$12^{(4)}$	1	$11^{(4)}$

Notes:

1. A shaded cell denotes an instruction in the C51 Architecture.
2. In internal execution only, add 1 to the number of states if the destination/return address is internal and odd.
3. Add 2 to the number of states if the destination address is external.
4. Add 5 to the number of states if $I N T R=1$.

8. ROM Verifying

8.1. Internal ROM Features

Mask ROM Devices

The internal ROM of the TSC83251G1D contains four different areas: Code Memory, Configuration Bytes, Encryption Array and Signature Bytes.
All the Internal ROM of TSC83251G1D products is made of Mask ROM cells. They can be verified using the same algorithm as the EPROM/OTP devices.

ROMless Devices

The TSC80251G1D products include only Signature Bytes made of Mask ROM cells. They can be verified using the same algorithm as the EPROM/OTP devices.
These products do not include on-chip Configuration Bytes, Code Memory and Encryption Array.

8.2. Encryption Features

In some microcontrollers applications, it is desirable that the user program code be secured from unauthorized access. The TSC83251G1D products include a 128-byte Encryption Array located in non volatile memory outside the memory address space. During verification of the on-chip code memory, the seven low-order address bits also address the Encryption Array. As the byte of the code memory is read, it is exclusive-NOR'ed (XNOR) with the key byte from the Encryption Array. If the Encryption Array is not programmed (still all 1s), the user program code is placed on the data bus in its original, unencrypted form. If the Encryption Array is programmed with key bytes, the user program code is encrypted and cannot be used without knowledge of the key byte sequence.

Note:
When a MOVC instruction is executed the content of the ROM is not encrypted. In order to fully protect the user program code, MOVC to the on-chip Code Memory can only be executed from the on-chip Code Memory when the encryption is used for mask ROM devices.
Program code in the on-chip Code Memory is encrypted when read out for verification if the Encryption Array is programmed.

Caution:

If the encryption feature is implemented, the portion of the on-chip code memory that does not contain program code should be filled with "random" byte values other than FFh to prevent the encryption key sequence from being revealed.
To preserve the secrecy of the encryption key byte sequence, the Encryption Array cannot be verified.

8.3. Signature Bytes

The TSC80251G1D derivatives contain factory-programmed Signature Bytes. These bytes are located in non-volatile memory outside the memory address space at $30 \mathrm{~h}, 31 \mathrm{~h}, 60 \mathrm{~h}$ and 61 h . To read the Signature Bytes, perform the procedure described in paragraph "Verify Algorithm". The values of the Signature Bytes are listed in Table 35.

Table 35. Signature Bytes (Electronic ID)

		Signature Address	Signature Data
Vendor	TEMIC	30 h	58 h
Architecture	C251	31 h	40 h
Memory	16 K MaskROM or ROMless	60 h	7 Bh
Revision	None (TSC80251G1 derivative) First (TSC80251G1D derivative)	61 h	FFh

Note:
The way Configuration Bytes are used is changing from TSC80251G1 derivatives to TSC80251G1D derivatives. The verify algorithm should check the product revision to select the right model.

8.4. Verify Algorithm

Figure 9 shows the hardware setup needed to verify the internal ROM areas of the TSC80251G1D derivatives:

- The chip has to be put under reset and maintained in this state until the completion of the verify sequence.
- The voltage on the EA\# pin has to be set to VDD.
- PSEN\# and the other control signals (ALE and Port 0) have to be set to a logic high level.
- Then PSEN\# has to be to forced to a logic low level after two clock cycles or more and it has to be maintained in this state until the completion of the programming sequence.
- The Verify Mode is selected according to the code applied on Port 0 (see Table 36). It has to be applied until the completion of this verification.
- The verification address is applied on Ports 1 and 3 which are respectively the MSB and the LSB of the address.
- Then device is driving the data on Port 2.
- PSEN\# and the other control signals have to be released to complete a sequence of verify operations.

Table 36. Verifying Modes

Verify ROM	RST	EA\#	PSEN\#	ALE	P0	P2	P1(MSB) P3(LSB)
On-chip code memory	1	1	0	1	28 h	Data	16-bit Address: 0000h-3FFFh (16K)
Configuration Bytes	1	1	0	1	29 h	Data	UCONFIG0: FFF8h UCONFIG1: FFF9h
Signature Bytes	1	1	0	1	29 h	Data	30h, 31h, 60h, 61 h

Figure 9. Setup for ROM Verifying

9. Absolute Maximum Rating and Operating Conditions

9.1. Absolute Maximum Rating

Table 37. Absolute Maximum Ratings


```
- Voltage on any other Pin to VSS . . . . . . . . . - -0.5 to +6.5 V
- IOL per I/O Pin . . . . . . . . . . . . . . . . . . . . . . . }15\textrm{mA
- Power Dissipation .......................... . . 1.5 W
```


9.2. Operating Conditions

Table 38. Operating Conditions

```
- Ambient Temperature Under Bias
    Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to \(+70^{\circ} \mathrm{C}\)
    Industrial ..................................... . . -40 to \(+85^{\circ} \mathrm{C}\)
- \(V_{D D}\)
    High Speed versions . . . . . . . . . . . . . . . . . . . . . . 4.5 to 5.5 V
    Low Voltage versions . . . . . . . . . . . . . . . . . . . . 2.7 to 5.5 V
```

[^1]
10. DC Characteristics - Commercial \& Industrial

10.1. DC Characteristics: High Speed versions - Commercial \& Industrial

Table 39. DC Characteristics; $\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typical ${ }^{(4)}$	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (except EA\#, SCL, SDA)	-0.5		$0.2 \mathrm{~V}_{\mathrm{DD}}-0.1$	V	
$\mathrm{V}_{\mathrm{IL} 1}{ }^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		$0.3 \mathrm{~V}_{\text {DD }}$	V	
$\mathrm{V}_{\text {IL2 }}$	Input Low Voltage (EA\#)	0		$0.2 \mathrm{~V}_{\text {DD }}-0.3$	V	
V_{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	$0.2 \mathrm{~V}_{\mathrm{DD}}+0.9$		$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
$\mathrm{V}_{\mathrm{IH} 1}{ }^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	$0.7 \mathrm{~V}_{\text {DD }}$		$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Ports 1, 2, 3)			$\begin{gathered} 0.3 \\ 0.45 \\ 1.0 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}^{(1)(2)} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}^{(1)(2)} \\ & \mathrm{I}_{\mathrm{OL}}=3.5 \mathrm{~mA}^{(1)(2)} \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Ports 0, ALE, PSEN\#,Port 2 in Page Mode during External Address)			$\begin{gathered} 0.3 \\ 0.45 \\ 1.0 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}^{(1)(2)} \\ & \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}^{(1)(2)} \\ & \mathrm{I}_{\mathrm{OL}}=7.0 \mathrm{~mA}^{(1)(2)} \end{aligned}$
V_{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN\#)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-0.3 \\ & \mathrm{~V}_{\mathrm{DD}}-0.7 \\ & \mathrm{~V}_{\mathrm{DD}}-1.5 \end{aligned}$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}^{(3)} \\ & \mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A}^{(3)} \\ & \mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A}^{(3)} \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-0.3 \\ & \mathrm{~V}_{\mathrm{DD}}-0.7 \\ & \mathrm{~V}_{\mathrm{DD}}-1.5 \end{aligned}$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-7.0 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {RST }}{ }^{+}$	Reset threshold on	3.9	4.1	4.3	V	
$\mathrm{V}_{\text {RST }}{ }^{-}$	Reset threshold off	3.4	3.6	3.8	V	
$\mathrm{V}_{\text {RET }}$	V_{DD} data retention limit			1.8	V	
$\mathrm{I}_{\text {IL0 }}$	Logical 0 Input Current (Ports 1, 2, 3)			- 50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {IL1 }}$	Logical 1 Input Current (NMI)			$+50$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
$\mathrm{I}_{\text {LI }}$	Input Leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$
I_{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3 - AWAIT\#)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	RST Pull-Down Resistor	40	170	225	$\mathrm{k} \Omega$	
$\mathrm{C}_{\text {IO }}$	Pin Capacitance		10		pF	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{DD}	Operating Current		18	25	mA	$\mathrm{F}_{\text {OSC }}=12 \mathrm{MHz}$
			23	30	mA	$\mathrm{F}_{\text {OSC }}=16 \mathrm{MHz}$
			34	40	mA	$\mathrm{F}_{\text {OSC }}=24 \mathrm{MHz}$
I_{DL}	Idle Mode Current		5	6	mA	$\mathrm{F}_{\mathrm{OSC}}=12 \mathrm{MHz}$
			6.5	8	mA	$\mathrm{F}_{\text {OSC }}=16 \mathrm{MHz}$
			9.5	12	mA	$\mathrm{F}_{\text {OSC }}=24 \mathrm{MHz}$
IPD	Power-Down Current		2	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{RET}}<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$

Notes:

1. Under steady-state (non-transient) conditions, IOL must be externally limited as follows:

Maximum $I_{O L}$ per port pin: . 10 mA	
Maximum IOL per 8-bit port:	Port 0 26 mA
	Ports 1-3 15 mA
Maximum Total $I_{\text {OL }}$ for all:	Output Pins . . 71 mA

If I IOL exceeds the test conditions, $V_{O L}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.
2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above $0.4 V$ on the low-level outputs of ALE and Ports 1 , 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
3. Capacitive loading on Ports 0 and 2 causes the $V_{O H}$ on ALE and PSEN\# to drop below the specification when the address lines are stabilizing.
4. Typical values are obtained using $V_{D D}=5 V$ and $T_{A}=25^{\circ} \mathrm{C}$ with no guarantee.

They are not tested and there is not guarantee on these values.
5. The input threshold voltage of $S C L$ and $S D A$ meets the $I^{2} C$ specification, so an input voltage below $0.3 . V_{D D}$ will be recognized as a logic 0 while an input voltage above 0.7. $V_{D D}$ will be recognized as a logic 1.

Note:

1. The clock prescaler is not used: $F_{O S C}=F_{X T A L}$.

Figure 10. $\mathrm{I}_{\mathrm{DD}} / \mathrm{I}_{\mathrm{DL}}$ versus Frequency; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V

10.2. DC Characteristics: Low Voltage versions - Commercial \& Industrial

Table 40. DC Characteristics from 2.7 to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typical ${ }^{(4)}$	Max	Units	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (except EA\#, SCL, SDA)	-0.5		$0.2 \mathrm{~V}_{\text {DD }}-0.1$	V	
$\mathrm{V}_{\mathrm{IL1}}{ }^{(5)}$	Input Low Voltage (SCL, SDA)	-0.5		$0.3 \mathrm{~V}_{\text {DD }}$	V	
$\mathrm{V}_{\text {IL2 }}$	Input Low Voltage (EA\#)	0		$0.2 \mathrm{~V}_{\text {DD }}-0.3$	V	
V_{IH}	Input high Voltage (except XTAL1, RST, SCL, SDA)	$0.2 \mathrm{~V}_{\mathrm{DD}}+0.9$		$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
$\mathrm{V}_{\mathrm{IH} 1}{ }^{(5)}$	Input high Voltage (XTAL1, RST, SCL, SDA)	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Ports 1, 2, 3)			0.45	V	$\mathrm{I}_{\mathrm{OL}}=0.8 \mathrm{~mA}^{(1)(2)}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (Ports 0, ALE, PSEN\#,Port 2 in Page Mode during External Address)			0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}^{(1)(2)}$
V_{OH}	Output high Voltage (Ports 1, 2, 3, ALE, PSEN\#)	$0.9 \mathrm{~V}_{\mathrm{DD}}$			V	$\mathrm{IOH}^{\text {a }}=-10 \mu \mathrm{~A}^{(3)}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output high Voltage (Port 0, Port 2 in Page Mode during External Address)	$0.9 \mathrm{~V}_{\mathrm{DD}}$			V	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$
$\mathrm{V}_{\text {RST }}{ }^{+}$	Reset threshold on	2.1	2.3	2.4	V	
$\mathrm{V}_{\text {RST }}$ -	Reset threshold off	1.8	2.0	2.1	V	
$\mathrm{V}_{\text {RET }}$	V_{DD} data retention limit			1.8	V	
$\mathrm{I}_{\text {IL0 }}$	Logical 0 Input Current (Ports 1, 2, 3 - AWAIT\#)			- 50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {IL1 }}$	Logical 1 Input Current (NMI)			$+50$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
$\mathrm{I}_{\text {LI }}$	Input Leakage Current (Port 0)			± 10	$\mu \mathrm{A}$	$0.45 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}$
I_{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
$\mathrm{R}_{\text {RST }}$	RST Pull-Down Resistor	40	170	225	$\mathrm{k} \Omega$	
C_{IO}	Pin Capacitance		10		pF	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{DD}	Operating Current		3.5	8	mA	$5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$
			7	11	mA	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$
			8	13	mA	$12 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$
I_{DL}	Idle Mode Current		0.5	1	mA	$5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$
			1.5	4	mA	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$
			2	5	mA	$12 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$
IPD	Power-Down Current		2	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{RET}}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$

Notes:

1. Under steady-state (non-transient) conditions, I IOL must be externally limited as follows:

Maximum $I_{O L}$ per port pin: . 10 mA	
Maximum IOL per 8-bit port:	Port 0 26 mA
	Ports 1-3 15 mA
Maximum Total $I_{\text {OL }}$ for all:	Output Pins . . 71 mA

If $I_{O L}$ exceeds the test conditions, $V_{O L}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.
2. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2, and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from high to low. In applications where capacitive loading exceeds 100 pF , the noise pulses on these signals may exceed 0.8 V . It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
3. Capacitive loading on Ports 0 and 2 causes the $V_{O H}$ on $A L E$ and PSEN\# to drop below the specification when the address lines are stabilizing.
4. Typical values are obtained using $V_{D D}=3 V$ and $T_{A}=25^{\circ} \mathrm{C}$ with no guarantee.

They are not tested and there is not guarantee on these values.
5.The input threshold voltage of SCL and SDA meets the $I^{2} C$ specification, so an input voltage below 0.3.VDD will be recognized as a logic 0 while an input voltage above 0.7. $V_{D D}$ will be recognized as a logic 1 .

Figure 11. $\mathrm{I}_{\mathrm{DD}} / \mathrm{I}_{\mathrm{DL}}$ versus $\mathrm{X}_{\text {TAL }}$ Frequency; $\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V

10.3. DC Characteristics: $I_{D D}, I_{D L}$ and $I_{P D}$ Test Conditions

Figure 12. I ${ }_{\text {DD }}$ Test Condition, Active Mode

Figure 13. IDL Test Condition, Idle Mode

Figure 14. IPD Test Condition, Power-Down Mode

11. AC Characteristics - Commercial \& Industrial

11.1. AC Characteristics - External Bus Cycles

Definition of symbols

Table 41. External Bus Cycles Timing Symbol Definitions

Signals	
A	Address
D	Data In
L	ALE
Q	Data Out
R	RD\#/PSEN\#
W	WR\#

Conditions	
H	High
L	Low
V	Valid
X	No Longer Valid
Z	Floating

Timings

Test conditions: capacitive load on all pins $=50 \mathrm{pF}$.
Table 42 and Table 43 list AC timing parameters for the TSC80251G1D with no wait states. External wait states can be added by extending PSEN\#/RD\#/WR\# and or by extending ALE. In these tables, Note 2 marks parameters affected by one ALE wait state, and Note 3 marks parameters affected by PSEN\#/RD\#/WR\# wait states.
Figure 15 to Figure 20 show the bus cycles with the timing parameters.

Table 42. Bus Cycles AC Timings; $V_{D D}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	12 MHz		16 MHz		24 MHz		Unit
		Min	Max	Min	Max	Min	Max	
$\mathrm{T}_{\text {OSC }}$	1/F ${ }_{\text {OSC }}$	83		62		41		ns
$\mathrm{T}_{\text {LHLL }}$	ALE Pulse Width	82		61		40		$n s^{(2)}$
$\mathrm{T}_{\text {AVLL }}$	Address Valid to ALE Low	80		59		38		$n s^{(2)}$
T LLAX	Address hold after ALE Low	27		19		2.5		ns
$\mathrm{T}_{\text {RLRH }}{ }^{(1)}$	RD\#/PSEN\# Pulse Width	158		118		76		$n s^{(3)}$
T WLWH	WR\# Pulse Width	160		120		78		$n s^{(3)}$
$\mathrm{T}_{\text {LLRL }}{ }^{(1)}$	ALE Low to RD\#/PSEN\# Low	41		27		14		ns
T LHAX	ALE High to Address Hold	116		81		43		$n s^{(2)}$
$\mathrm{T}_{\text {RLDV }}{ }^{(1)}$	RD\#/PSEN\# Low to Valid Data		144		102		59	$n s^{(3)}$
$\mathrm{T}_{\text {RHDX }}{ }^{(1)}$	Data Hold After RD\#/PSEN\# High	0		0		0		ns
$\mathrm{T}_{\text {RHAX }}{ }^{(1)}$	Address Hold After RD\#/PSEN\# High	0		0		0		ns
$\mathrm{T}_{\text {RLAZ }}{ }^{(1)}$	RD\#/PSEN\# Low to Address Float		2		2		2	ns
$\mathrm{T}_{\text {RHDZ1 }}$	Instruction Float After RD\#/PSEN\# High		23		23		23	ns
T ${ }_{\text {RHDZ2 }}$	Data Float After RD\#/PSEN\# High		188		146		104	ns
T ${ }_{\text {RHLH1 }}$	RD\#/PSEN\# high to ALE High (Instruction)	24		24		24		ns
$\mathrm{T}_{\text {RHLH2 }}$	RD\#/PSEN\# high to ALE High (Data)	189		148		104		ns
TWHLH	WR\# High to ALE High	192		150		103		ns
T ${ }_{\text {AVDV1 }}$	Address (P0) Valid to Valid Data In		262		187		110	$\mathrm{ns}{ }^{(2)(3)}$
$\mathrm{T}_{\text {AVDV2 }}$	Address (P2) Valid to Valid Data In		300		217		137	$n S^{(2)(3)}$
T ${ }_{\text {AVDV3 }}$	Address (P0) Valid to Valid Instruction In		146		104		62	ns
T ${ }_{\text {AXDX }}$	Data Hold after Address Hold	0		0		0		ns
$\mathrm{T}_{\text {AVRL }}{ }^{(1)}$	Address Valid to RD\# Low	125		91		57		$\mathrm{ns}{ }^{(2)}$
$\mathrm{T}_{\text {AVWL1 }}$	Address (P0) Valid to WR\# Low	124		90		53		$\mathrm{ns}{ }^{(2)}$
$\mathrm{T}_{\text {AVWL2 }}$	Address (P2) Valid to WR\# Low	162		119		75		ns ${ }^{(2)}$
TWHQX	Data Hold after WR\# High	81		60		37		ns
T ${ }_{\text {QVWH }}$	Data Valid to WR\# High	135		104		74		$n s^{(3)}$
$\mathrm{T}_{\text {WHAX }}$	WR\# High to Address Hold	168		126		84		ns

Notes:

1. Specification for PSEN\# are identical to those for RD\#.
2. If a wait state is added by extending ALE, add $2 \times T_{\text {OSC }}$.
3. If wait states are added by extending RD\#/PSEN\#/WR\#, add $2 N \times T_{O S C}(N=1 . .3)$.

Table 43. Bus Cycles AC Timings; $V_{D D}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	12 MHz		Unit
		Min	Max	
$\mathrm{T}_{\text {OSC }}$	1/F ${ }_{\text {OSC }}$	83		ns
$\mathrm{T}_{\text {LHLL }}$	ALE Pulse Width	81		$n s^{(2)}$
$\mathrm{T}_{\text {AVLL }}$	Address Valid to ALE Low	66		$n s^{(2)}$
$\mathrm{T}_{\text {LLAX }}$	Address hold after ALE Low	5		ns
$\mathrm{T}_{\text {RLRH }}{ }^{(1)}$	RD\#/PSEN\# Pulse Width	152		$\mathrm{ns}{ }^{(3)}$
TWLWH	WR\# Pulse Width	155		$\mathrm{ns}{ }^{(3)}$
$\mathrm{T}_{\text {LLRL }}{ }^{(1)}$	ALE Low to RD\#/PSEN\# Low	34		ns
T LHAX	ALE High to Address Hold	93		$n s^{(2)}$
$\mathrm{T}_{\text {RLDV }}{ }^{(1)}$	RD\#/PSEN\# Low to Valid Data		115	$n \mathrm{~s}^{(3)}$
$\mathrm{T}_{\text {RHDX }}{ }^{(1)}$	Data Hold After RD\#/PSEN\# High	0		ns
$\mathrm{T}_{\text {RHAX }}{ }^{(1)}$	Address Hold After RD\#/PSEN\# High	0		ns
$\mathrm{T}_{\text {RLAZ }}{ }^{(1)}$	RD\#/PSEN\# Low to Address Float		$2^{(4)}$	ns
T ${ }_{\text {RHDZ1 }}$	Instruction Float After RD\#/PSEN\# High		35	ns
TRHDZ2	Data Float After RD\#/PSEN\# High		199	ns
TRHLH1	RD\#/PSEN\# high to ALE High (Instruction)	24		ns
TRHLH2	RD\#/PSEN\# high to ALE High (Data)	189		ns
$\mathrm{T}_{\text {WHLH }}$	WR\# High to ALE High	192		ns
T ${ }_{\text {AVDV1 }}$	Address (P0) Valid to Valid Data In		214	$\mathrm{ns}^{(2)(3)}$
TAVDV2	Address (P2) Valid to Valid Data In		271	$\mathrm{ns}^{(2)(3)}$
TAVDV3	Address (P0) Valid to Valid Instruction In		131	ns
T ${ }_{\text {AXDX }}$	Data Hold after Address Hold	0		ns
$\mathrm{T}_{\text {AVRL }}{ }^{(1)}$	Address Valid to RD\# Low	114		$\mathrm{ns}{ }^{(2)}$
$\mathrm{T}_{\text {AVWL1 }}$	Address (P0) Valid to WR\# Low	112		ns ${ }^{(2)}$
$\mathrm{T}_{\text {AVWL2 }}$	Address (P2) Valid to WR\# Low	161		$n s^{(2)}$
T WHQX	Data Hold after WR\# High	87		ns
T ${ }_{\text {QVWH }}$	Data Valid to WR\# High	135		$\mathrm{n}^{(3)}$
$\mathrm{T}_{\text {WHAX }}$	WR\# High to Address Hold	164		ns

Notes:

1. Specification for PSEN\# are identical to those for RD\#.
2. If a wait state is added by extending ALE, add $2 \times T_{O S C}$.
3. If wait states are added by extending RD\#/PSEN\#/WR\#, add $2 N \times T_{\text {OSC }}(N=1 . .3)$.
4. $T_{R L A Z}$ max is 0 ns if $V_{D D}<3.6 \mathrm{~V}$.

Waveforms in Non-Page Mode

Note:

1. The value of this parameter depends on wait states. See Table 42 and Table 43.

Figure 15. External Bus Cycle: Code Fetch (Non-Page Mode)

Note:

1. The value of this parameter depends on wait states. See Table 42 and Table 43.

Figure 16. External Bus Cycle: Data Read (Non-Page Mode)

Note:

1. The value of this parameter depends on wait states. See Table 42 and Table 43.

Figure 17. External Bus Cycle: DataWrite (Non-Page Mode)

Waveforms in Page Mode

Notes:

1. The value of this parameter depends on wait states. See Table 42 and Table 43.
2. A page hit (i.e., a code fetch to the same 256 -byte "page" as the previous code fetch) requires one state ($2 \times$ TOSC); a page miss requires two states ($4 \times T_{\text {OSC }}$).
3. During a sequence of page hits, PSEN\# remains low until the end of the last page-hit cycle.

Figure 18. External Bus Cycle: Code Fetch (Page Mode)

Note:

1. The value of this parameter depends on wait states. See Table 42 and Table 43.

Figure 19. External Bus Cycle: Data Read (Page Mode)

Note:

1. The value of this parameter depends on wait states. See Table 42 and Table 43.

Figure 20. External Bus Cycle: DataWrite (Page Mode)

11.2. AC Characteristics - Real-Time Synchronous Wait State

Definition of symbols

Table 44. Real-Time Synchronous Wait Timing Symbol Definitions

	Signals
C	WCLK
R	RD\#/PSEN\#
W	WR\#
Y	WAIT\#

Conditions	
L	Low
V	Valid
X	No Longer Valid

Timings

Table 45. Real-Time Synchronous Wait AC Timings; $\mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{T}_{\text {CLYV }}$	Wait Clock Low to Wait Set-up	0	$T_{\mathrm{OSC}}-20$	ns
$\mathrm{~T}_{\text {CLYX }}$	Wait Hold after Wait Clock Low	$2 \mathrm{~W} \times \mathrm{T}_{\mathrm{OSC}}+5$	$(1+2 \mathrm{~W}) \times \mathrm{T}_{\mathrm{OSC}}-20$	ns
$\mathrm{~T}_{\text {RLYV }}$	PSEN\#/RD\# Low to Wait Set-up	0	$T_{\mathrm{OSC}}-20$	ns
$\mathrm{~T}_{\text {RLYX }}$	Wait Hold after PSEN\#/RD\# Low	$2 \mathrm{~W} \times \mathrm{T}_{\mathrm{OSC}}+5$	$(1+2 \mathrm{~W}) \times \mathrm{T}_{\mathrm{OSC}}-20$	ns
$\mathrm{~T}_{\text {WLYV }}$	WR\# Low to Wait Set-up	0	$T_{\mathrm{OSC}}-20$	ns
$\mathrm{~T}_{\text {WLYX }}$	Wait Hold after WR\# Low	$2 \mathrm{~W} \times \mathrm{T}_{\mathrm{OSC}}+5$	$(1+2 \mathrm{~W}) \times \mathrm{T}_{\mathrm{OSC}}-20$	ns

Waveforms

Figure 21. Real-time Synchronous Wait State: Code Fetch/Data Read

Figure 22. Real-time Synchronous Wait State: Data Write

11.3. AC Characteristics - Real-Time Asynchronous Wait State

Definition of symbols

Table 46. Real-Time Asynchronous Wait Timing Symbol Definitions

Signals	
S	PSEN\#/RD\#/WR\#
Y	AWAIT\#

Timings

Table 47. Real-Time Asynchronous Wait AC Timings; $V_{D D}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{T}_{\text {SLYV }}$	PSEN\#/RD\#/WR\# Low to Wait Set-up		$\mathrm{T}_{\mathrm{OSC}}-10$	ns
$\mathrm{~T}_{\text {SLYX }}$	Wait Hold after PSEN\#/RD\#/WR\# Low	$(2 \mathrm{~N}-1) \times \mathrm{T}_{\mathrm{OSC}}+10$		$\mathrm{~ns}{ }^{(1)}$

Note:

1. N is the number of wait states added $(N \geq 1)$.

Waveforms

Figure 23. Real-time Asynchronous Wait State Timings

11.4. AC Characteristics - Serial Port in Shift Register Mode

Definition of symbols

Table 48. Serial Port Timing Symbol Definitions

Signals	
D	Data In
Q	Data Out
X	Clock

Conditions	
H	High
L	Low
V	Valid
X	No Longer Valid

Timings

Table 49. Serial Port AC Timing -Shift Register Mode; $\mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	12 MHz		$16 \mathrm{MHz}{ }^{(1)}$		$24 \mathrm{MHz}{ }^{(1)}$		Unit
		Min	Max	Min	Max	Min	Max	
$\mathrm{T}_{\text {XLXL }}$	Serial Port Clock Cycle Time	998		749		500		ns
$\mathrm{T}_{\text {QVXH }}$	Output Data Setup to Clock Rising Edge	833		625		417		ns
$\mathrm{T}_{\text {XHQX }}$	Output Data hold after Clock Rising Edge	165		124		82		ns
T ${ }_{\text {XHDX }}$	Input Data Hold after Clock Rising Edge	0		0		0		ns
$\mathrm{T}_{\text {XHDV }}$	Clock Rising Edge to Input Data Valid		974		732		482	ns

Note:

1. For high speed versions only.

Waveforms

Note:

1. TI and RI are set during S1P1 of the peripheral cycle following the shift of the eight bit.

Figure 24. Serial Port Waveforms - Shift Register Mode

11.5. AC Characteristics - SSLC: $\mathbf{I}^{2} \mathbf{C}$ Interface

Timings

Table 50. $\mathrm{I}^{2} \mathrm{C}$ Interface AC Timing; $\mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $\mathbf{8 5}^{\circ} \mathrm{C}$

Symbol	Parameter	INPUT	OUTPUT
		Min Max	Min Max
Thd; STA	Start condition hold time	$14 \times \mathrm{TCLCL}^{(4)}$	$4.0 \mu \mathrm{~S}{ }^{(1)}$
Tlow	SCL low time	$16 \times$ TCLCL $^{(4)}$	$4.7 \mu \mathrm{~s}{ }^{(1)}$
Thigh	SCL high time	$14 \times \mathrm{TCLCL}^{(4)}$	$4.0 \mu \mathrm{~S}{ }^{(1)}$
Trc	SCL rise time	$1 \mu \mathrm{~s}$	- (2)
Tfc	SCL fall time	$0.3 \mu \mathrm{~s}$	$0.3 \mu \mathrm{~s}{ }^{(3)}$
Tsu; DAT1	Data set-up time	250 ns	$20 \times$ TCLCL ${ }^{(4)}$ - TRD
Tsu; DAT2	SDA set-up time (before repeated START condition)	250 ns	$1 \mu \mathrm{~S}{ }^{(1)}$
Tsu; DAT3	SDA set-up time (before STOP condition)	250 ns	$8 \times \mathrm{TCLCL}^{(4)}$
Thd; DAT	Data hold time	0 ns	$8 \times \mathrm{TCLCL}^{(4)}-\mathrm{TFC}$
Tsu; STA	Repeated START set-up time	$14 \times$ TCLCL $^{(4)}$	$4.7 \mu \mathrm{~S}^{(1)}$
Tsu; STO	STOP condition set-up time	$14 \times \mathrm{TCLCL}^{(4)}$	$4.0 \mu \mathrm{~S}{ }^{(1)}$
Tbuf	Bus free time	$14 \times$ TCLCL $^{(4)}$	$4.7 \mu \mathrm{~S}^{(1)}$
TRD	SDA rise time	$1 \mu \mathrm{~s}$	- (2)
TFD	SDA fall time	$0.3 \mu \mathrm{~s}$	$0.3 \mu \mathrm{~s}{ }^{(3)}$

Notes:

1. At $100 \mathrm{kbit} / \mathrm{s}$. At other bit-rates this value is inversely proportional to the bit-rate of $100 \mathrm{kbit} / \mathrm{s}$.
2. Determined by the external bus-line capacitance and the external bus-line pull-up resistor, this must be $<1 \mu \mathrm{~s}$.
3. Spikes on the SDA and SCL lines with a duration of less than $3 \times$ TCLCL will be filtered out. Maximum capacitance on bus-lines SDA and $S C L=400 \mathrm{pF}$.
4. TCLCL $=T_{O S C}=$ one oscillator clock period.

Waveforms

Figure 25. $\mathrm{I}^{\mathbf{2}} \mathrm{C}$ Waveforms

11.6. AC Characteristics - SSLC: SPI Interface

Definition of symbols

Table 51. SPI Interface Timing Symbol Definitions

Signals	
C	Clock
I	Data In
O	Data Out
S	SS\#

Conditions	
H	High
L	Low
V	Valid
X	No Longer Valid
Z	Floating

Timings

Table 52. SPI Interface AC Timing; $V_{D D}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{8 5}^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Unit
Slave mode ${ }^{(1)}$				
$\mathrm{T}_{\mathrm{CHCH}}$	Clock Period	8		TOSC
$\mathrm{T}_{\text {CHCX }}$	Clock High Time	3.2		T OSC
T ${ }_{\text {CLCX }}$	Clock Low Time	3.2		T OSC
$\mathrm{T}_{\text {SLCH, }}, \mathrm{T}_{\text {SLCL }}$	SS\# Low to Clock edge	200		ns
$\mathrm{T}_{\text {IVCL }}, \mathrm{T}_{\text {IVCH }}$	Input Data Valid to Clock Edge	100		ns
$\mathrm{T}_{\text {CLIX }}, \mathrm{T}_{\text {CHIX }}$	Input Data Hold after Clock Edge	100		ns
$\mathrm{T}_{\text {CLOV, }} \mathrm{T}_{\text {CHOV }}$	Output Data Valid after Clock Edge		100	ns
$\mathrm{T}_{\text {CLOX }}, \mathrm{T}_{\text {CHOX }}$	Output Data Hold Time after Clock Edge	0		ns
$\mathrm{T}_{\text {CLSH }}, \mathrm{T}_{\text {CHSH }}$	SS\# High after Clock Edge	0		ns
$\mathrm{T}_{\text {IVCL }}, \mathrm{T}_{\text {IVCH }}$	Input Data Valid to Clock Edge	100		ns
$\mathrm{T}_{\text {CLIX }}, \mathrm{T}_{\text {CHIX }}$	Input Data Hold after Clock Edge	100		ns
TSLOV	SS\# Low to Output Data Valid		130	ns
$\mathrm{T}_{\text {SHOX }}$	Output Data Hold after SS\# High		130	ns
$\mathrm{T}_{\text {SHSL }}$	SS\# High to SS\# Low	(2)		
$\mathrm{T}_{\text {ILIH }}$	Input Rise Time		2	$\mu \mathrm{s}$
$\mathrm{T}_{\text {IHIL }}$	Input Fall Time		2	$\mu \mathrm{s}$
$\mathrm{T}_{\mathrm{OLOH}}$	Output Rise time		100	ns
$\mathrm{T}_{\text {OHOL }}$	Output Fall Time		100	ns

Symbol	Parameter	Min	Max	Unit
Master mode ${ }^{(3)}$				
$\mathrm{T}_{\mathrm{CHCH}}$	Clock Period	4		T OSC
$\mathrm{T}_{\text {CHCX }}$	Clock High Time	1.6		T OSC
$\mathrm{T}_{\text {CLCX }}$	Clock Low Time	1.6		T OSC
$\mathrm{T}_{\text {IVCL }}, \mathrm{T}_{\text {IVCH }}$	Input Data Valid to Clock Edge	50		ns
$\mathrm{T}_{\text {CLIX }}, \mathrm{T}_{\text {CHIX }}$	Input Data Hold after Clock Edge	50		ns
$\mathrm{T}_{\text {CLOV, }} \mathrm{T}_{\text {CHOV }}$	Output Data Valid after Clock Edge		65	ns
$\mathrm{T}_{\text {CLOX }}, \mathrm{T}_{\text {CHOX }}$	Output Data Hold Time after Clock Edge	0		ns
$\mathrm{T}_{\text {ILIH }}$	Input Data Rise Time		2	$\mu \mathrm{s}$
$\mathrm{T}_{\text {IHIL }}$	Input Data Fall Time		2	$\mu \mathrm{s}$
$\mathrm{T}_{\mathrm{OLOH}}$	Output Data Rise time		50	ns
$\mathrm{T}_{\text {OHOL }}$	Output Data Fall Time		50	ns

Notes:

1. Capacitive load on all pins $=200 \mathrm{pF}$ in slave mode.
2. The value of this parameter depends on software.
3. Capacitive load on all pins $=100 \mathrm{pF}$ in master mode.

Waveforms

Note:

1. SS\# handled by software.

Figure 26. SPI Master Waveforms (SSCPHA= 0)

Note:

1. SS\# handled by software

Figure 27. SPI Master Waveforms (SSCPHA=1)

Note:

1. Not Defined but normally MSB of character just received.

Figure 28. SPI Slave Waveforms (SSCPHA=0)

Note:

1. Not Defined but generally the LSB of the character which has just been received.

Figure 29. SPI Slave Waveforms (SSCPHA=1)

11.7. AC Characteristics - ROM Verifying

Definition of symbols

Table 53. ROM Verifying Timing Symbol Definitions

Signals	
A	Address
E	Enable: mode set on Port 0
Q	Data Out

Conditions	
H	High
L	Low
V	Valid
X	No Longer Valid
Z	Floating

Timings

Table 54. ROM Verifying AC timings; $V_{D D}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{T}_{\text {OSC }}$	XTAL1 Frequency	82.5	250	ns
$\mathrm{~T}_{\text {AVQV }}$	Address to Data Valid		$48 \times \mathrm{T}_{\text {OSC }}$	ns
$\mathrm{T}_{\text {AXQX }}$	Address to Data Invalid	0		ns
$\mathrm{~T}_{\text {ELQV }}$	ENABLE low to Data Valid	0	$48 \times \mathrm{T}_{\text {OSC }}$	ns
$\mathrm{T}_{\text {EHQZ }}$	Data Float after ENABLE	0	$48 \times \mathrm{T}_{\mathrm{OSC}}$	ns

Waveforms

Figure 30. ROM Verifying Waveforms

11.8. AC Characteristics - External Clock Drive and Logic Level References

Definition of symbols

Table 55. External Clock Timing Symbol Definitions

	Signals
C	Clock

Conditions	
L	Low
H	High
X	No Longer Valid

Timings

Table 56. External Clock AC Timings; $\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{F}_{\text {OSC }}$	Oscillator Frequency		24	MHz
$\mathrm{T}_{\text {CHCX }}$	High Time	10	ns	
$\mathrm{~T}_{\text {CLCX }}$	Low Time	10	ns	
$\mathrm{~T}_{\text {CLCH }}$	Rise Time	3	ns	
$\mathrm{~T}_{\text {CHCL }}$	Fall Time	3	ns	

Waveforms

Figure 31. External Clock Waveform

Note:
During AC testing, all inputs are driven at $V_{D D}-0.5 V$ for a logic 1 and $0.45 V$ for a logic 0 .
Timing measurements are made on all outputs at $V_{I H}$ min for a logic 1 and $V_{I L}$ max for a logic 0 .
Figure 32. AC Testing Input/Output Waveforms

Note:
For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loading $V_{O H} / V_{O L}$ level occurs with $I_{O L} / I_{O H}= \pm 20 \mathrm{~mA}$.

Figure 33. Float Waveforms

12. Packages

12.1. List of Packages

- PDIL 40
- PLCC 44
- VQFP $44(10 \times 10)$
12.2. PDIL 40 - Mechanical Outline

Figure 34. Plastic Dual In Line

Table 57. PDIL Package Size

	Min	Max	Min	Max
A	-	5.08	-	. 200
A1	0.38	-	. 015	-
A2	3.18	4.95	. 125	. 195
B	0.36	0.56	. 014	. 022
B1	0.76	1.78	. 030	. 070
C	0.20	0.38	. 008	. 015
D	50.29	53.21	1.980	2.095
E	15.24	15.87	. 600	. 625
E1	12.32	14.73	. 485	. 580
e	2.54 B.S.C.		. 100 B.S.C.	
eA	15.24 B.S.C.		. 600 B.S.C.	
eB	-	17.78	-	. 700
L	2.93	3.81	. 115	. 150
D1	0.13	-	. 005	-

12.3. PLCC 44 - Mechanical Outline

Figure 35. Plastic Lead Chip Carrier

Table 58. PLCC Package Size

	MM		INCH	
	Min	Max	Min	Max
A	4.20	4.57	. 165	. 180
A1	2.29	3.04	. 090	. 120
D	17.40	17.65	. 685	. 695
D1	16.44	16.66	. 647	. 656
D2	14.99	16.00	. 590	. 630
E	17.40	17.65	. 685	. 695
E1	16.44	16.66	. 647	. 656
E2	14.99	16.00	. 590	. 630
e	1.27 BSC		. 050 BSC	
G	1.07	1.22	. 042	. 048
H	1.07	1.42	. 042	. 056
J	0.51	-	. 020	-
K	0.33	0.53	. 013	. 021
Nd	11		11	
Ne	11		11	

12.4. VQFP $44(10 \times 10)$ - Mechanical Outline

Figure 36. Shrink Quad Flat Pack (Plastic)

Table 59. VQFP Package Size

	Min	Max	Min	Max
A	-	1.60	-	. 063
A1				
A2				
A3	1.35	1.45	. 053	. 057
D	11.90	12.10	. 468	. 476
D1	9.90	10.10	. 390	. 398
E	11.90	12.10	. 468	. 476
E1	9.90	10.10	. 390	. 398
J	0.05	-	. 002	6
L	0.45	0.75	. 018	. 030
e	0.80 BSC		. 0315 BSC	
f	0.35 BSC		. 014 BSC	

13. Ordering Information

13.1. TSC80251G1D ROMless (Step D)

High Speed Versions 4.5 to 5.5 V , Commercial and Industrial

TEMIC Part Number ${ }^{(2)}$	ROM	Description
TSC80251G1D-24CA	ROMless	24 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, PDIL 40
TSC80251G1D-24CB	ROMless	24 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, PLCC 44
TSC80251G1D-24CED	ROMless	24 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, VQFP 44, Dry pack ${ }^{(1)}$
TSC80251G1D-16CA	ROMless	16 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, PDIL 40
TSC80251G1D-16CB	ROMless	16 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, PLCC 44
TSC80251G1D-16CED	ROMless	16 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, VQFP 44, Dry pack ${ }^{(1)}$
TSC80251G1D-16IA	ROMless	16 MHz , Industrial -40° to $85^{\circ} \mathrm{C}$, PDIL 40
TSC80251G1D-16IB	ROMless	16 MHz , Industrial -40° to $85^{\circ} \mathrm{C}$, PLCC 44

Low Voltage Versions 2.7 to 5.5 V, Commercial

TEMIC Part Number ${ }^{(2)}$	ROM	Description
TSC80251G1D-L12CB	ROMless	12 MHz, Commercial, PLCC 44
TSC80251G1D-L12CED	ROMless	12 MHz, Commercial, VQFP 44, Dry pack ${ }^{(1)}$

13.2. TSC83251G1D Mask ROM (Step D)

High Speed Versions 4.5 to 5.5 V , Commercial and Industrial

TEMIC Part Number ${ }^{(2)}$	ROM	Description
TSC251G1Dxxx-24CA	16K MaskROM	24 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, PDIL 40
TSC251G1Dxxx-24CB	16K MaskROM	24 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, PLCC 44
TSC251G1Dxxx-24CED	16K MaskROM	24 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, VQFP 44, Dry pack ${ }^{(1)}$
TSC251G1Dxxx-16CA	16K MaskROM	16 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, PDIL 40
TSC251G1Dxxx-16CB	16K MaskROM	16 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, PLCC 44
TSC251G1Dxxx-16CED	16K MaskROM	16 MHz , Commercial 0° to $70^{\circ} \mathrm{C}$, VQFP 44, Dry pack ${ }^{(1)}$
TSC251G1Dxxx-16IA	16K MaskROM	16 MHz , Industrial -40° to $85^{\circ} \mathrm{C}$, PDIL 40
TSC251G1Dxxx-16IB	16K MaskROM	16 MHz , Industrial -40° to $85^{\circ} \mathrm{C}$, PLCC 44

Low Voltage Versions 2.7 to 5.5 V , Commercial

TEMIC Part Number ${ }^{\text {(2) }}$	ROM	Description
TSC251G1Dxxx-L12CB	16 K MaskROM	12 MHz, Commercial 0° to $70^{\circ} \mathrm{C}$, PLCC 44
TSC251G1Dxxx-L12CED	16 K MaskROM	12 MHz, Commercial 0° to $70^{\circ} \mathrm{C}$, VQFP 44, Dry pack ${ }^{(1)}$

Notes:

1. Dry Pack mandatory for VQFP package.
2. xxx: means ROM code, is Cxxx in case of encrypted code.

13.3. TSC87251G1A OTP (Step A)

High Speed Versions 4.5 to 5.5 V , Commercial and Industrial

TEMIC Part Number	ROM	Description
TSC87251G1A-16CA	16 K OTP ROM	16 MHz, Commercial 0° to $70^{\circ} \mathrm{C}$, PDIL 40
TSC87251G1A-16CB	16 K OTP ROM	16 MHz, Commercial 0° to $70^{\circ} \mathrm{C}$, PLCC 44
TSC87251G1A-16IA	16 K OTP ROM	16 MHz, Industrial -40° to $85^{\circ} \mathrm{C}$, PDIL 40
TSC87251G1A-16IB	16 K OTP ROM	16 MHz, Industrial -40° to $85^{\circ} \mathrm{C}$, PLCC 44

13.4. TSC87251G1A EPROM - UV Window package (Step A)

High Speed Versions 4.5 to 5.5 V , Industrial

TEMIC Part Number	ROM	Description
TSC87251G1A-16IC	16 K EPROM	16 MHz , Industrial -40° to $85^{\circ} \mathrm{C}$, window CQPJ 44

13.5. Options (Please consult TEMIC sales)

- ROM code encryption
- Tape \& Real or Dry Pack
- Known good dice
- Ceramic packages
- Extended temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

13.6. Starter Kit

TEMIC Part Number	Description
TSC80251-SK	TSC80251 Starter Kit

13.7. Product Marking

Mask ROM versions	ROMless versions
TEMIC Customer Part number Temic Part number ® INTEL'97 YYWW . Lot Number	TEMIC Temic Part number ® INTEL'97 YYWW . Lot Number

[^0]: Notes:
 Special care should be taken when the Program Counter (PC) increments:

 - If the program executes exclusively from on-chip code memory (not from external memory), beware of executing code from the upper eight bytes of the on-chip ROM (FF:3FF8h-FF:3FFFFh). Because of its pipeline capability, the TSC80251G1D may attempt to prefetch code from external memory (at an address above FF:3FFFFh) and thereby disrupt I/O Ports 0 and 2. Fetching code constants from these 8 bytes does not affect Ports 0 and 2.
 - When PC reaches the end of segment FF:, it loops to the reset address FF:0000h (for compatibility with the C51 Architecture). When PC increments beyond the end of segment FE:, it continues at the reset address FF:0000h (linearity). When PC increments beyond the end of segment 01:, it loops to the beginning of segment 00: (this prevents from its going into the reserved area).

[^1]: Note:
 Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "operating conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability

