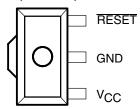

SLVS041I - SEPTEMBER 1991 - REVISED AUGUST 2003

- Power-On Reset Generator
- Automatic Reset Generation After Voltage Drop
- Low Standby Current . . . 20 μA
- RESET Output Defined When V_{CC} Exceeds 1 V
- Precision Threshold Voltage 4.55 V ±120 mV
- High Output Sink Capability . . . 20 mA
- Comparator Hysteresis Prevents Erratic Resets

description/ordering information

The TL7757 is a supply-voltage supervisor designed for use in microcomputer and microprocessor systems. The supervisor monitors the supply voltage for undervoltage conditions. During power up, when the supply voltage, V_{CC} , attains a value approaching 1 V, the RESET output becomes active (low) to prevent undefined operation. If the supply voltage drops below threshold voltage level (V_{IT-}), the RESET output goes to the active (low) level until the supply undervoltage fault condition is eliminated.



NC-No internal connection

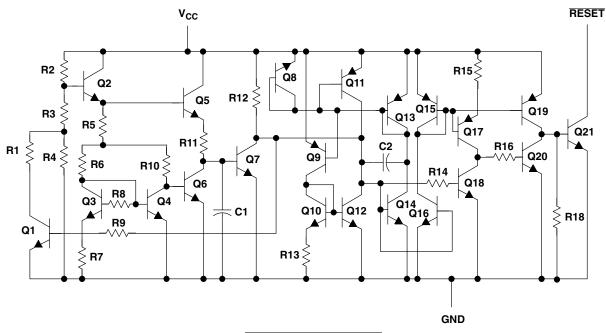
PK PACKAGE (TOP VIEW)

GND is in electrical contact with the tab.

ORDERING INFORMATION

TA	PACKAG	iE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	COIC (D)	Tube of 75	TL7757CD	77570		
	SOIC (D)	Reel of 2500	TL7757CDR	7757C		
0°C to 70°C	SOT (PK)	Reel of 1000	TL7757CPK	T7		
	T0000 / T0 00 // D)	Bulk of 1000	TL7757CLP	TI 77570		
	TO226 / TO-92 (LP)	Reel of 2000	TL7757CLPR	TL7757C		
	COIC (D)	Tube of 75	TL7757ID	77571		
	SOIC (D)	Reel of 2500	TL7757IDR	77571		
-40°C to 85°C	SOT (PK)	Reel of 1000	TL7757IPK	71		
	TO006 / TO 00 /LD)	Bulk of 1000	TL7757ILP	TI 77571		
	TO226 / TO-92 (LP)	Reel of 2000	TL7757ILPR	TL7757I		

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS041I - SEPTEMBER 1991 - REVISED AUGUST 2003

equivalent schematic

	ACTUAL DEVICE COMPONENT COUNT									
Transistors 27										
Resistors	20									
Capacitors	2									

absolute maximum ratings over operating junction temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)		0.3 V to 20 V
Off-state output voltage range (see Note 1)		0.3 V to 20 V
Output current, I _O		30 mA
Package thermal impedance, θ_{JA} (see Notes 2 and 3):	D package	97°C/W
	LP package	140°C/W
	PK package	52°C/W
Operating virtual junction temperature, T _J		150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10	seconds	260°C
Storage temperature range, T _{stg}		-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to network terminal ground.
 - 2. Maximum power dissipation is a function of $T_J(max)$, $\tilde{\theta}_{JA}$, and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SLVS041I - SEPTEMBER 1991 - REVISED AUGUST 2003

recommended operating conditions

			MIN	MAX	UNIT
V_{CC}	Supply voltage		1	7	V
V _{OH}	High-level output voltage			15	V
I _{OL}	Low-level output current			20	mA
т.	Operating free air temperature		0	70	°C
T _A	Operating free-air temperature	-40	85	U	

electrical characteristics at specified free-air temperature

	PARAMETER	TEST CONDITIONS	_	Т	L7757C		
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
.,	No matice and in a large of the cook and cooks are at M		25°C	4.43	4.55	4.67	V
V_{IT-}	Negative-going input threshold voltage at V_{CC}		0°C to 70°C	4.4		4.7	V
\/ +	I historia at V		25°C	40	50	60	\/
V _{hys} †	Hysteresis at V _{CC}		0°C to 70°C	30		70	mV
.,	Landard and and and and	1 00 m A 1/ 4 0 1/	25°C		0.4	8.0	.,
V _{OL}	Low-level output voltage	$I_{OL} = 20 \text{ mA}, V_{CC} = 4.3 \text{ V}$	0°C to 70°C			8.0	V
	High lavel autout august	$V_{CC} = 7 \text{ V}, \qquad V_{OH} = 15 \text{ V},$	25°C			1	
Іон	High-level output current	See Figure 1	0°C to 70°C			1	μ A
\/ +	Danier in was at walters	$R_L = 2.2 \text{ k}\Omega$	25°C		0.8	1	V
V _{res} ‡	Power-up reset voltage	V_{CC} slew rate $\leq 5 \text{ V/}\mu\text{s}$	0°C to 70°C			1.2	V
		V 40V	25°C		1400	2000	
Icc	Supply current	V _{CC} = 4.3 V	0°C to 70°C			2000	μΑ
		V _{CC} = 5.5 V	0°C to 70°C			40	

[†] This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT-}. ‡ This is the lowest voltage at which RESET becomes active.

switching characteristics at specified free-air temperature

	PARAMETER	TEST CONDITIONS	_	TL7757C			
	PARAMETER	1EST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
	Propagation delay time, low-to-high-level	V_{CC} slew rate $\leq 5 \text{ V/}\mu\text{s}$,	25°C		3.4	5	
t _{PLH}	output	See Figures 2 and 3	0°C to 70°C			5	μs
	Propagation delay time, high-to-low-level	0 5	25°C		2	5	_
t _{PHL}	output	See Figures 2 and 3	0°C to 70°C			5	μs
	Disco time	V _{CC} slew rate ≤ 5 V/μs,	25°C		0.4	1	_
t _r	Rise time	See Figures 2 and 3	0°C to 70°C			1	μs
	E-H-Co.	0 5	25°C		0.05	1	_
t _f	Fall time	See Figures 2 and 3	0°C to 70°C			1	μs
	Minimum pulse duration at V _{CC} for output		25°C			5	
t _{w(min)}	response		0°C to 70°C			5	μs

TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR

SLVS041I - SEPTEMBER 1991 - REVISED AUGUST 2003

electrical characteristics at specified free-air temperature

	PARAMETER	TEST CONDITIONS	_	7	L7757I		UNIT
	PANAMEIEN	TEST CONDITIONS	T _A	MIN	TYP	MAX	ONIT
, , , , , , , , , , , , , , , , , , ,	No notice as in a forest three should sell a set V		25°C	4.43	4.55	4.67	.,
V_{IT-}	Negative-going input threshold voltage at V _{CC}		-40°C to 85°C	4.4		4.7	٧
v +	Heatensia at V		25°C	40	50	60	\/
V _{hys} †	Hysteresis at V _{CC}		-40°C to 85°C	30		70	mV
, , , , , , , , , , , , , , , , , , ,	Law L	L 00 A 1/ 4.0 1/	25°C		0.4	0.8	V
V _{OL}	Low-level output voltage	$I_{OL} = 20 \text{ mA}, V_{CC} = 4.3 \text{ V}$	-40°C to 85°C			8.0	V
Ī.	I limb land a short a summer	$V_{CC} = 7 \text{ V}, \qquad V_{OH} = 15 \text{ V},$	25°C			1	
Іон	High-level output current	See Figure 1	-40°C to 85°C			1	μΑ
+	D	$R_L = 2.2 \text{ k}\Omega$,	25°C		0.8	1	V
V _{res} ‡	Power-up reset voltage	V_{CC} slew rate $\leq 5 \text{ V/}\mu\text{s}$	-40°C to 85°C			1.2	٧
		V 40V	25°C		1400	2000	
Icc	Supply current	$V_{CC} = 4.3 \text{ V}$	-40°C to 85°C			2100	μΑ
		V _{CC} = 5.5 V	-40°C to 85°C			40	

[†] This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT-}.

switching characteristics at specified free-air temperature

	PARAMETER	TEST CONDITIONS	_	7			
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
	Duran a matical adalas, times a lass, to brigh lassed as should	V_{CC} slew rate $\leq 5 \text{ V/}\mu\text{s}$,	25°C		3.4	5	
t _{PLH}	Propagation delay time, low-to-high-level output	See Figures 2 and 3	-40°C to 85°C			5	μS
	B		25°C		2	5	
t _{PHL}	Propagation delay time, high-to-low-level output	See Figures 2 and 3	-40°C to 85°C			5	μs
	Disa Nova	V _{CC} slew rate ≤ 5 V/μs,	25°C		0.4	1	
t _r	Rise time	See Figures 2 and 3	-40°C to 85°C			1	μs
	E 11.1	0 5 0 10	25°C		0.05	1	
t _f	Fall time	See Figures 2 and 3	-40°C to 85°C			1	μs
•	Minimum pulse duration at V _{CC} for output		25°C			5	
t _{w(min)}	response		-40°C to 85°C			5	μs

[‡] This is the lowest voltage at which RESET becomes active.

SLVS041I – SEPTEMBER 1991 – REVISED AUGUST 2003

PARAMETER MEASUREMENT INFORMATION

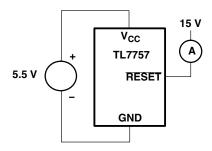
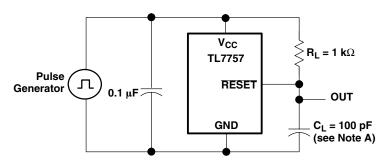
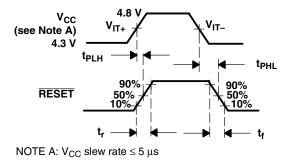
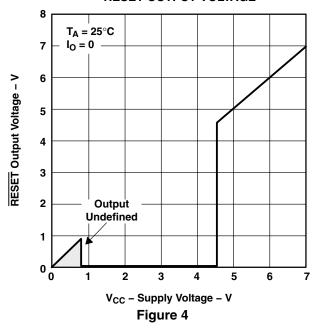



Figure 1. Test Circuit for Output Leakage Current

NOTE A: Includes jig and probe capacitance

Figure 2. Test Circuit for RESET Output Switching Characteristics




Figure 3. Switching Diagram

TYPICAL CHARACTERISTICS†

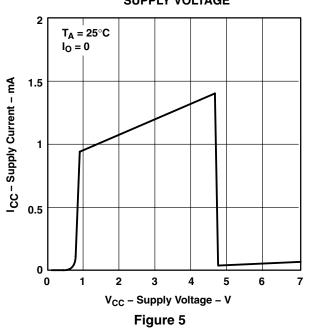
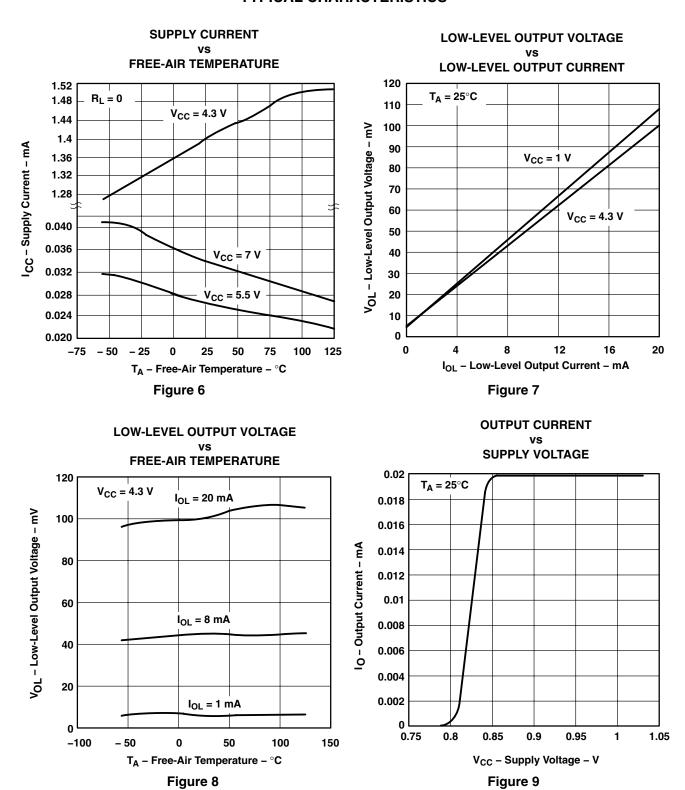

Table of Graphs

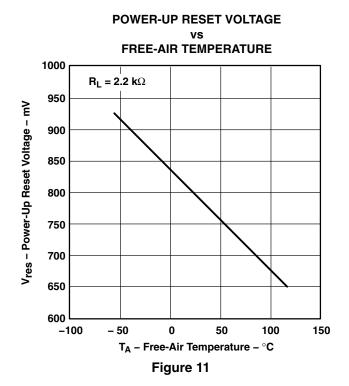
		FIGURE
V _{CC}	Supply voltage vs RESET output voltage	4
I _{CC}	Supply current vs Supply voltage	5
I _{CC}	Supply current vs Free-air temperature	6
V _{OL}	Low-level output voltage vs Low-level output current	7
V _{OL}	Low-level output voltage vs Free-air temperature	8
I _{OL}	Output current vs Supply voltage	9
V _{IT-}	Input threshold voltage (negative-going V_{CC}) vs Free-air temperature	10
V _{res}	Power-up reset voltage vs Free-air temperature	11
V _{res}	Power-up reset voltage and supply voltage vs Time	12
	Propagation delay time	13

SUPPLY VOLTAGE vs RESET OUTPUT VOLTAGE


SUPPLY CURRENT vs SUPPLY VOLTAGE

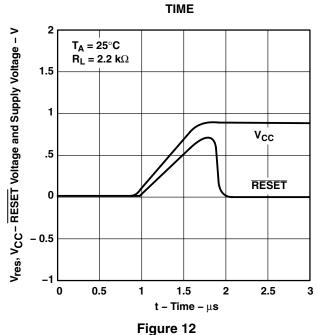
[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS†


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS†

(NEGATIVE-GOING V_{CC}) FREE-AIR TEMPERATURE 4.6 $R_L = 0$ 4.59 V_{IT} - Input Threshold Voltage - V 4.58 4.57 4.56 4.55 4.54 4.53 4.52 4.51 4.5 -100 150 T_A - Free-Air Temperature - °C


INPUT THRESHOLD VOLTAGE

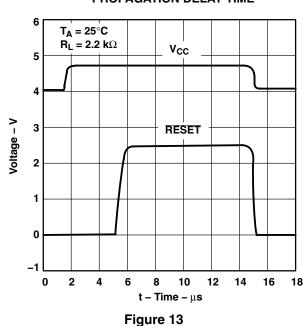
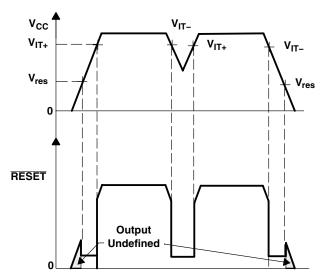

POWER-UP RESET VOLTAGE AND SUPPLY VOLTAGE

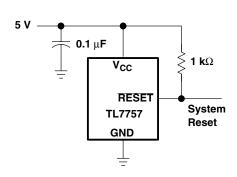
Figure 10

VS

PROPAGATION DELAY TIME



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



APPLICATION INFORMATION

TYPICAL TIMING DIAGRAM

TYPICAL APPLICATION DIAGRAM

www.ti.com 11-Nov-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
TL7757CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757CLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL7757CLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL7757CLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL7757CLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL7757CPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
TL7757CPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
TL7757ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757IDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757IDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7757ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL7757ILPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL7757IPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
TL7757IPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
TL7757MD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL7757MDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL7757MLP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2009

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

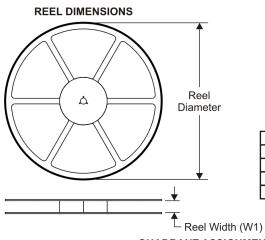
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

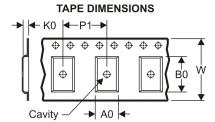
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

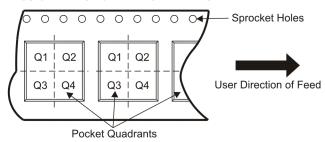
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

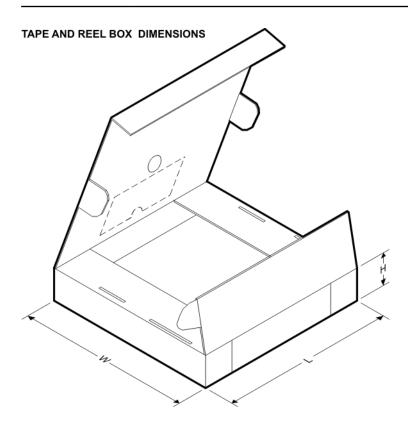

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

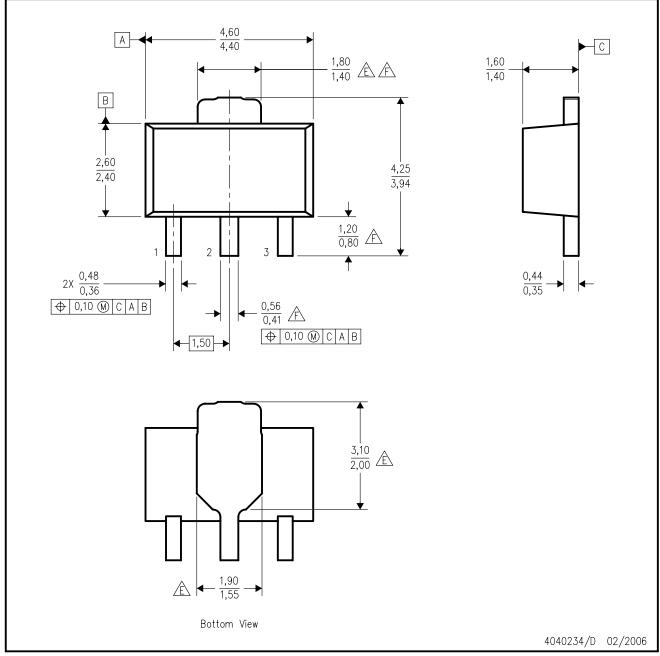

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL7757CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL7757CPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3
TL7757IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL7757IPK	SOT-89	PK	3	1000	180.0	12.4	4.91	4.52	1.9	8.0	12.0	Q3

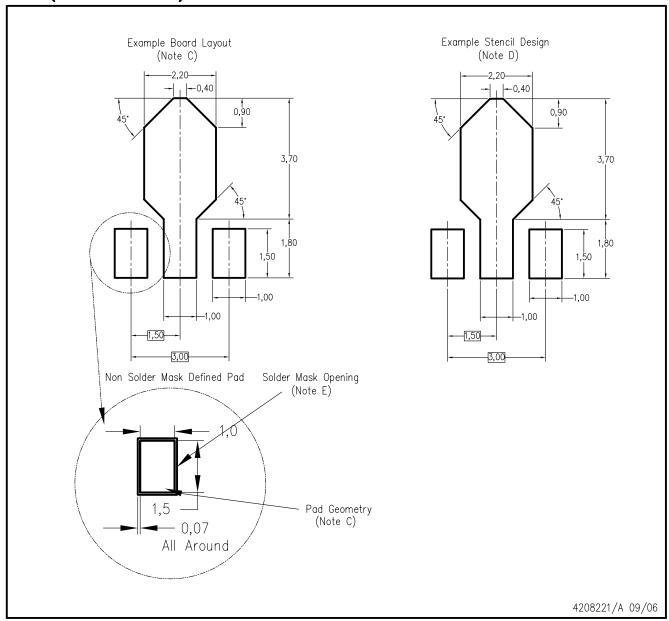


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL7757CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL7757CPK	SOT-89	PK	3	1000	340.0	340.0	38.0
TL7757IDR	SOIC	D	8	2500	340.5	338.1	20.6
TL7757IPK	SOT-89	PK	3	1000	340.0	340.0	38.0

PK (R-PSSO-F3)

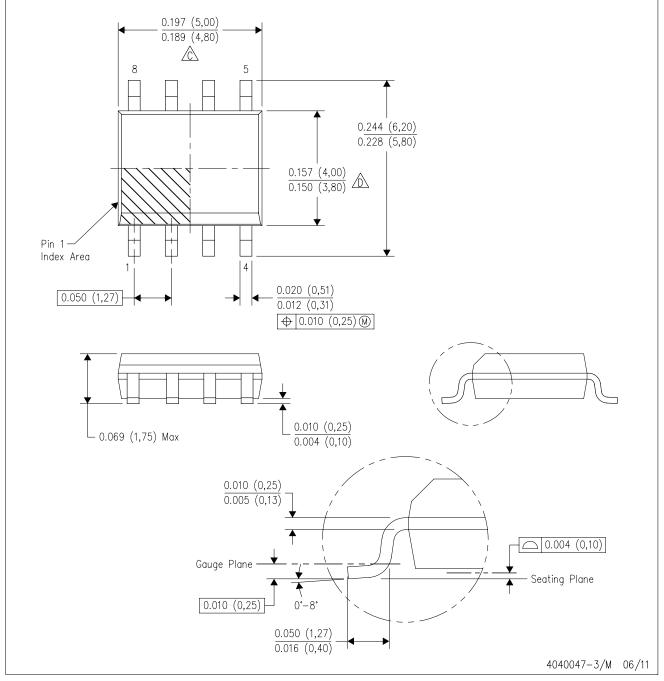
PLASTIC SINGLE-IN-LINE PACKAGE


NOTES:

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- This drawing is subject to change without notice.
- The center lead is in electrical contact with the tab.
- Body dimensions do not include mold flash or protrusion. Mold flash and protrusion not to exceed 0.15 per side.
- Thermal pad contour optional within these dimensions.
- Falls within JEDEC T0-243 variation AA, except minimum lead length, pin 2 minimum lead width, minimum tab width.

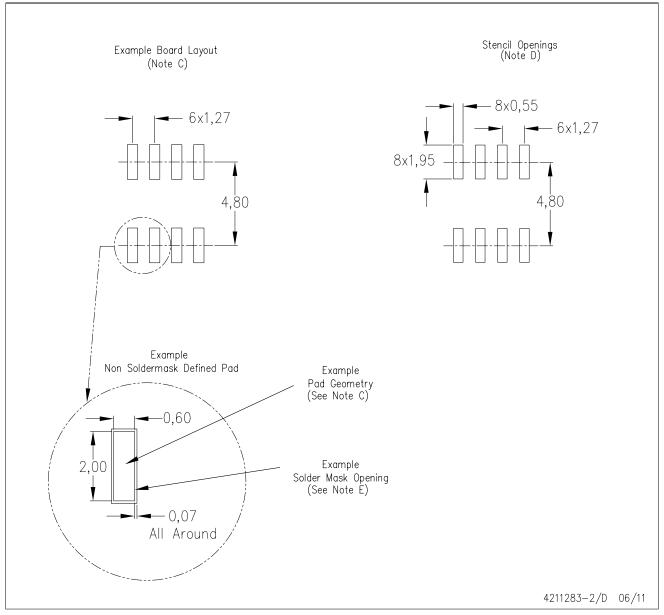
PK (R-PDSO-G3)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

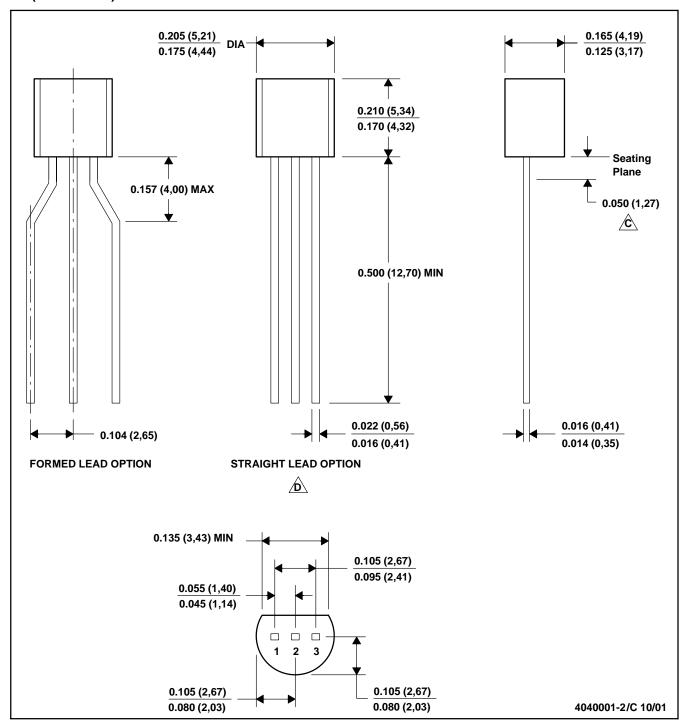
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

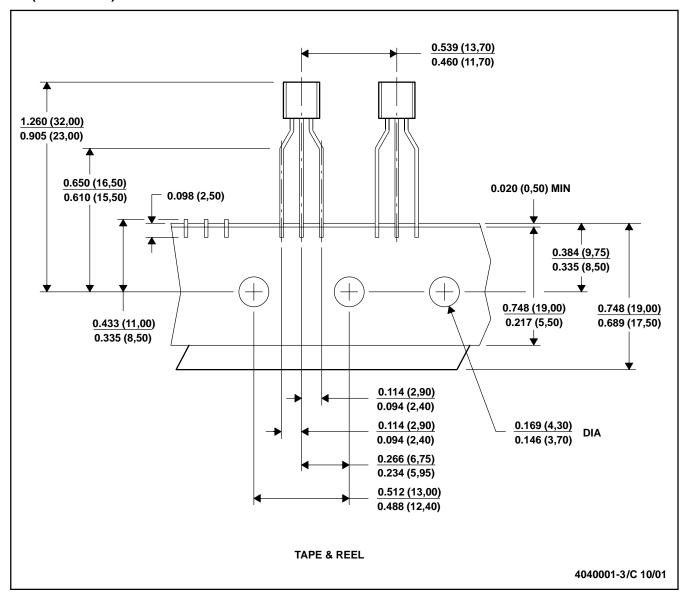
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice. $\hfill \hfill \$

C.\ Lead dimensions are not controlled within this area

D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)

E. Shipping Method:


Straight lead option available in bulk pack only.

Formed lead option available in tape & reel or ammo pack.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Tape and Reel information for the Format Lead Option package.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications			
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications		
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers		
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps		
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy		
DSP	dsp.ti.com	Industrial	www.ti.com/industrial		
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical		
Interface	interface.ti.com	Security	www.ti.com/security		
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps		
RF/IF and ZigBee® Solutions	www.ti.com/lprf				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com

TI E2E Community Home Page