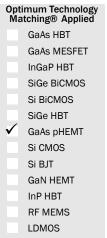
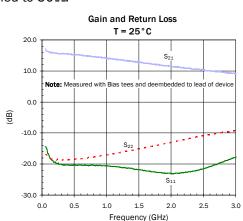


0.05 GHz to 3 GHz, CASCADABLE pHEMT MMIC AMPLIFIER

Package: SOT-89





Product Description

RFMD's SXE-1089Z is a high performance pHEMT MMIC amplifier utilizing a patented self-bias Darlington topology housed in a lowcost, surface mountable SOT-89 package. The active bias network provides stable current over temperature and process thereshold voltage variations. Designed to run directly from a 5V supply, the SXE-1089Z does not require a dropping resistor as compared to typical Darlington amplifiers. The SXE-1089Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally

matched to 50Ω .

Features

- Excellent ACP -65dBc with 9.5dBm Channel Power at 2140MHz
- OIP₃=38.5dBm at 2140MHz
- P_{1dB}=22.6dBm at 2140MHz
- Gain=11.7 dB at 1960 MHz
- NF=3.2dB at 1960MHz
- Single-Supply Operation:5V at I_{DO} = 128 mA
- Broadband Internal Matching, No Dropping Resistor
- Patented Self-Bias Darlington Topology
- Consistent Current versus Temperature
- Insensitive to Process Threshold Voltage Variation

Applications

 PA Driver Amplifier, Multi-Carrier Applications

Parameter	Specification			Unit	Condition	
raiailletei	Min.	Тур.	Тур. Мах.		Condition	
Small Signal Gain		14.2		dB	880MHz	
		11.7		dB	1960MHz	
	9.6	11.1	12.6	dB	2140MHz	
Output Power at 1dB Compression		22.4		dBm	880MHz	
		22.9		dBm	1960MHz	
	20.7	22.2		dBm	2140MHz	
Output Third Order Intercept Point		38.0		dBm	880 MHz, 5 dBm per tone, 1 MHz spacing,	
		38.5		dBm	1960MHz, 5dBm per tone, 1MHz spacing,	
	36.6	38.6		dBm	2140 MHz, 5 dBm per tone, 1 MHz spacing,	
IS-95 Channel Power		13.2		dBm	880MHz, -65dBc ACP, tested with 9 Channels FWD	
		17.0		dBm	880 MHz, -45 dBc ACP	
WCDMA Channel Power		9.5		dBm	2140MHz, -65dBc ACP, tested with 64 Channels FWD	
		14.5		dBm	2140 MHz, -45 dBc ACP	
Input Return Loss	16.0	20.0		dB	2140MHz	
Output Return Loss	11.7	15.7		dB	2140MHz	
Noise Figure		3.2	4.2	dB	2140MHz	
Device Operating Voltage		5.0		V		
Device Operating Current	118	128	138	mA		
Thermal Resistance		45.0		°C/W	junction - lead	

Test Conditions: $V_D = 5V$, $I_{DQ} = 128$ mA Typ. , $T_L = 25$ °C, $Z_S = Z_L = 50\Omega$, Tested with Broadband Application Circuit

Absolute Maximum Ratings

Parameter	Rating	Unit
Device Current (I _D)	170	mA
10/		
Device Voltage (V _D)	5.5	V
RF Input Power* (See Note)	25	dBm
Junction Temp (T _J)	+150	°C
Operating Temp Range (T _L)	-40 to +85	°C
Storage Temp	+150	°C
ESD Rating - Human Body Model (HBM)	Class 1B	
Moisture Sensitivity Level	MSL 2	

^{*}Note: Load condition $Z_L = 50\Omega$.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Typical RF Performance with Application Circuit at Key Operating Frequencies (with Broadband Application Circuit)

Parameter	Unit	500	880	1570	1960	2140	2440	3000
		MHz						
Small Signal Gain (S ₂₁)	dB	14.7	14.2	12.6	11.7	11.2	10.5	9.1
Output Third Order Intercept Point, 5dBm per tone, 1MHz spacing (OIP ₃)	dBm	38.0	38.0	38.5	38.5	38.5	38.5	37.0
Channel Power at -65dBc (ACP ¹)	dBm		13.2			9.5		
Output Power at 1dB Compression (P _{1dB})	dBm	20.6	22.4	23.0	22.9	22.6	22.3	21.3
Input Return Loss	dB	23.5	13.5	15.5	19.0	21.5	31.5	23.0
Output Return Loss	dB	9.0	13.0	19.5	24.0	23.0	18.5	13.0
Reverse Isolation (S ₁₂)	dB	-21.0	-20.0	-18.5	-18.0	-17.5	-17.0	-16.0
Noise Figure (NF)	dB	3.2	3.2	3.2	3.2	3.2	3.2	3.4

Test Conditions: $V_D=5V$ $I_{DQ}=128\,\text{mA}$ Typ. $ACP^1=880\,\text{MHz}$ tested with IS-95 Ch. FWD $T_L=25\,^\circ\text{C}$ $Z_S=Z_L=50\Omega$ 2140MHz tested with WCDMA 64 Ch. FWD Note: OIP $_3$ can be improved to 39-40 dBm by lowering the output choke and/or increasing the output DC block. These changes will reduce

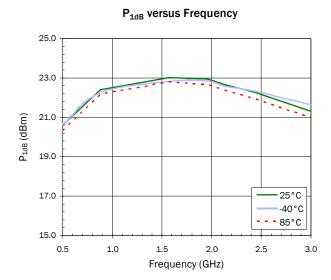
P_{1dB} and ACPR.

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression:

 $I_DV_D < (T_J - T_L) / R_{TH}$, j-I and $T_L = \tilde{T}_{LEAD}$

0.0


0.5

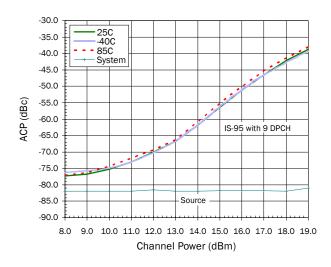
1.0

Typical RF Performance (with Broadband Application Circuit)

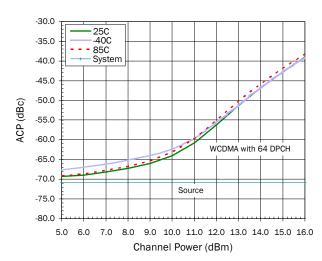
NF versus Frequency

3.0 2.0 1.0

ACP versus Channel Power @ 880MHz

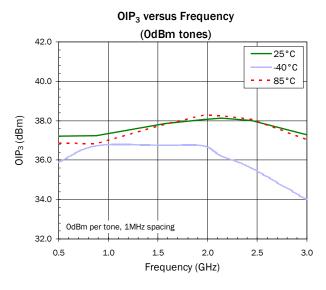

Frequency (GHz)

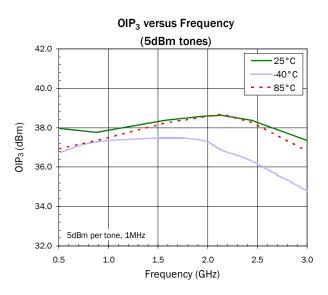
2.0

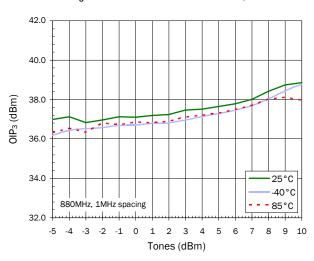

2.5

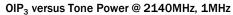
1.5

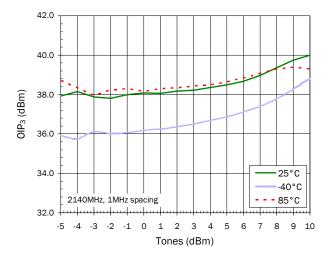
3.0



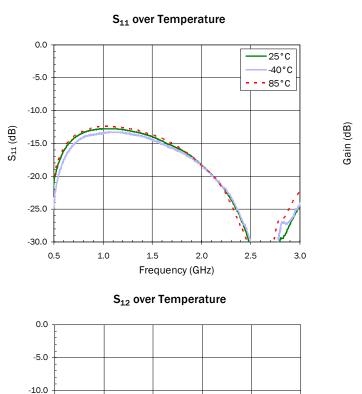

ACP versus Channel Power @ 2140MHz

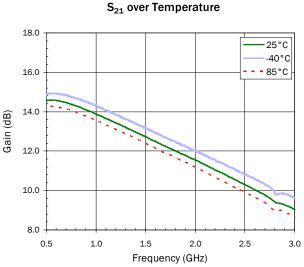


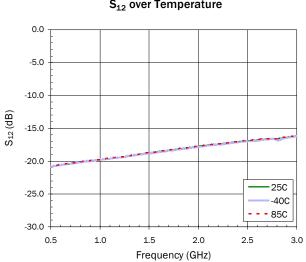

Typical RF Perfromance (With Broadband Application Circuit)

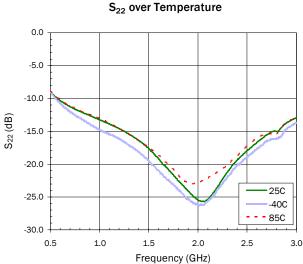


OIP₃ versus Tone Power @ 880MHz, 1MHz

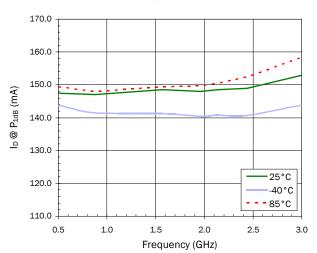






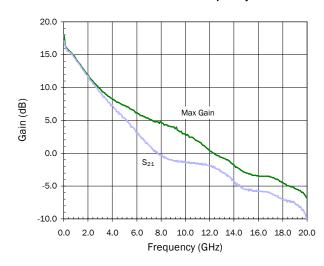


S-Parameters over Temperature (With Broadband Application Circuit)



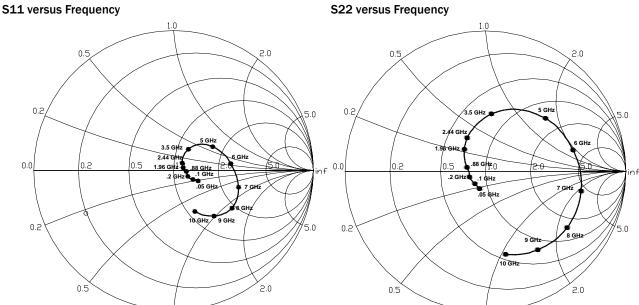
Device Current over Temperature

DCIV versus Temperature


160.0 140.0 120.0 100.0 80.0 60.0 40.0 25°C 20.0 -40°C - - - 85°C 0.0 1.0 3.0 4.0 5.0 V_D (Volts)

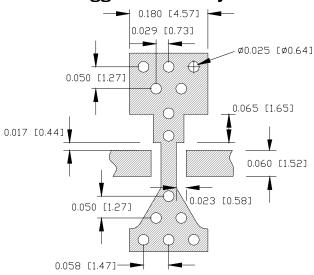
Current at P_{1dB} versus Frequency

Typical Performance - De-embedded S-Parameters

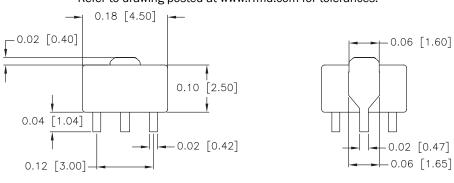

Max Gain versus Frequency

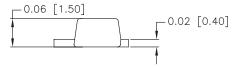
1.0

Note:

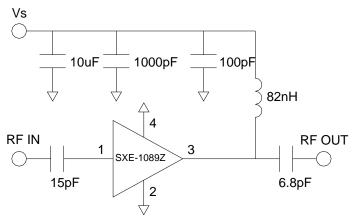

S-parameters are de-embedded to the device leads with ZS=ZL=50 Ω . De-embedded S-parameters can be downloaded from our website (www.rfmd.com)

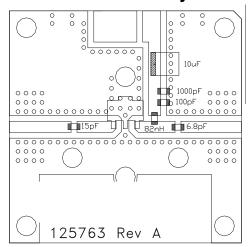
1.0

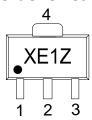

Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads and acieve optimum RF performance.
3	RF OUT/BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.


Suggested Pad Layout

Package Drawing


Dimensions in inches (millimeters)
Refer to drawing posted at www.rfmd.com for tolerances.




Application Schematic

Evaluation Board Layout

Part Identification

Alternate marking "SXE1089Z" on line one with Trace Code on line two.

Ordering Information

Part Number	Description	Reel Size	Devices/Reel
SXE-1089Z	Lead Free, RoHS Compliant	7"	1000
SXE-1089Z-EVB1	500MHz to 2500MHz	N/A	N/A

