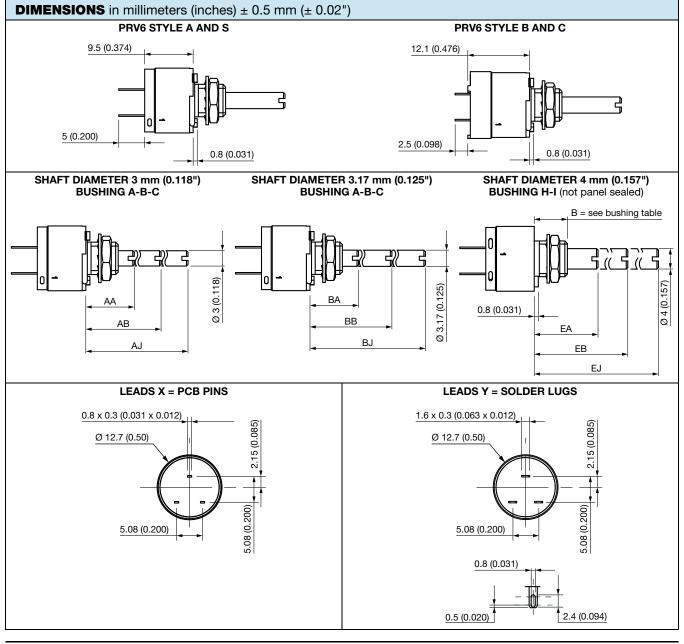
www.vishay.com


Vishay Sfernice

Fully Sealed Potentiometer Cermet or Conductive Plastic

50 K 03

FEATURES

- PRV6S high power rating 1.5 W at 70 °C (cermet)
- PRV6A 0.75 W at 70 °C (conductive plastic)
- Tests according to CECC 41000 or IEC 60393-1
- Military performances
- Low cost
- Fully sealed and panel sealed
- Compatible RV6 (MIL R 94)
- Mechanical endurance 50 000 cycles
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

) (Pb) RoHS

COMPLIANT

Revision: 04-May-12 For technical questions, contact Document Number: 51035

For technical questions, contact: <u>sfer@vishay.com</u> - See also Application Notes: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

Vishay Sfernice

ELECTRICAL SPECIFICA	TIONS							
		PRV6S, PRV6B	PRV6A, PRV6C					
Resistive element		cermet	conductive plastic					
Electrical travel		270	[°] ± 15°					
Resistance range	per (A)	20 Ω to 10 M Ω	1 kΩ to 1 MΩ					
non-line	ar taper (F-L)	470 Ω to 1 M Ω	470 Ω to 500 kΩ (± 20 %)					
Taper			L 50° 75° al travel 270°, 15° cal travel 300°					
standard	1	± 20 %	± 20 %					
Tolerance on reque	est	± 10 %, ± 5 %	± 10 % (1 kΩ to 100 kΩ)					
Circuit diagram			$a \longrightarrow b \longrightarrow cw$ (2)					
Power rating at 70 °C		1.5 W at 70 °C	0.75 W at 70 °C					
other tag	pers	0.75 W	0.4 W					
Power rating chart			near taper taper near taper 60 70 80 100 125					
Temperature coefficient (typical)			EATURE IN DEGREES CELSIUS ± 500 ppm/°C					
Limiting element voltage		± 150 ppm/°C	± 500 ppm/°C 50 V					
Contact resistance variation (CF	N .		50 V 6 or 3 Ω					
End resistance (typical)			1Ω					
Dielectric strength (RMS)			0 V _{RMS}					
Insulation resistance (500 V _{DC})		10 ⁶ ΜΩ						

Revision: 04-May-12

2

Document Number: 51035

www.vishay.com

SHA

PRV6

Vishay Sfernice

MECHANICAL SPECIFICATIONS	
Mechanical travel	300° ± 5°
Operating torque (Ncm (oz.in.))	0.5 to 2 (0.7 to 3)
End stop torque (max. Ncm (lb.in.))	35 (3)
Tightening torque (max. Ncm (lb.in.))	150 (13)

ENVIRONMENTAL SPECIFICATIONS										
PRV6S, PRV6B PRV6A, PRV6C										
Temperature range	- 55 °C to + 125 °C	- 40 °C to + 125 °C								
Climatic category	55/125/56	40/125/56								
Sealing	Fully sealed contailer; IP67 and panel sealed									

PERFORMANCES										
TESTS	CONDITIONS	TYPICAL VALUES AND DRIFTS								
12313	CONDITIONS	∆R _T /R _T (%)	∆R ₁₋₂ /R ₁₋₂ (%)	OTHER						
Electrical endurance	1000 h at rated power 90'/30' - temperature 70 °C	±1%		CRV < 3 % Rn						
Climatic sequence	Phase A dry heat 100 °C Phase B damp heat Phase C cold - 55 °C Phase D damp heat 5 cycles	± 0.5 %	±1%							
Damp heat, steady state	56 days	± 0.5 %	±1%	Insulation resistance: > $10^4 M\Omega$						
Change of temperature	5 cycles, - 55 °C to + 125 °C	± 0.5 %								
Mechanical endurance	50 000 cycles	±3%		CRV < 2 % Rn						
Shock	50 <i>g</i> at 11 ms 3 successive shocks in 3 directions	± 0.1 %	± 0.2 %							
Vibration	10 Hz to 55 Hz 0.75 mm or 10 <i>g</i> during 6 h	± 0.1 %	± 0.2 %							

STANDARD	PRV6S	AND PRV6B WITH L	INEAR TAPER	PRV6S AN	PRV6S AND PRV6B WITH NON-LINEAR TAPER				
RESISTANCE VALUES	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. WIPER CURRENT	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. WIPER CURRENT			
Ω	w	V	mA	w	V	mA			
20	1.5	5.48	274						
50	1.5	8.66	173						
100	1.5	12.2	122						
200	1.5	17.3	87						
500	1.5	27.4	55	0.75	19.4	39			
1K	1.5	38.7	38.7	0.75	0.75 27.3				
2K	1.5	54.8	27.4	0.75	38.2	19.3 12.2			
5K	1.5	86.6	17.3	0.75	61.2				
10K	1.5	122.5	12.2	0.75	87	8.7			
20K	1.5	173	8.26	0.75	122	6.1			
50K	1.5	274	5.65	0.75	194	3.9			
100K	1.22	350	3.5	0.75	273	2.74			
220K	0.61	350	1.75	0.61	350	1.75			
500K	0.25	350	0.70	0.25	350	0.7			
1M	0.12	350	0.35	0.12	350	0.35			
2M	0.06	350	0.17						
5M	0.025	350	0.070						
10M	0.012	350	0.035						

Revision: 04-May-12

3

Document Number: 51035

For technical questions, contact: <u>sfer@vishay.com</u> - See also Application Notes: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Sfernice

MARKING

- Vishay trademark
- Part number
- Manufacturing date code
- Terminal: 1

PACKAGING

• Box of 15, 20, 25, or 50 pieces, code B12, B15, B17, or B25, depending of body and shaft construction

OPTIONS	
SPECIAL FEATURES	
Panel sealing	Except for dia. 4 mm shaft, an O.ring is supplied with the potentiometer. This O.ring should be placed into the groove of the body and ensures the panel sealing. For dia. 4 mm shaft please see note "P" in ordering information.
Shaft locking	Bushing E $(\frac{123}{10})$ $(\frac{123}{10})$ $(\frac{10}{$
Shafts	Shaft lengths are measured from the mounting face to the free end of the shaft. Special shafts are available if the customer supplies a drawing. The shaft slot is aligned to the wiper within $\pm 10^{\circ}$.
Hardware	Nuts, washer and O.ring are separately supplied (not mounted on the potentiometer), in a small bag placed in the packaging.
Locating peg	Except for dia. 4 mm shaft, the potentiometers are delivered with 2 opposite locating pegs orientated at 45°. These 2 pegs can be easily broken-off by the customer. On request, the orientation of the pegs can be at 30° instead of 45°. Locating Peg A Bushing: A-B-C-D-E Panel cutout Locating Peg L Bushing: A-B-C-D-E Panel cutout ϕ ($\frac{5}{26}$) Locating Peg L Bushing: A-B-C-D-E Panel ϕ ($\frac{5}{26}$) ϕ ($$

4

Document Number: 51035

For technical questions, contact: <u>sfer@vishay.com</u> - See also Application Notes: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Sfernice

LOCATING PEO	LOCATING PEG CODE											
BUSHING	OLD CODE	Α	L	R	0							
A	6	х	х		x ⁽¹⁾							
В	61	х	х		x ⁽¹⁾							
С	62	х	х		x ⁽¹⁾							
D	61H	х	х		x ⁽¹⁾							
E	62H	х	х		x ⁽¹⁾							
Н	6Q			х								
I	61Q			х								
J	6QP				х							
K	61QP				х							
S	61QH			х								
S	61QPH				х							

Note

⁽¹⁾ Not standard, special manufacturing

ORDE	ORDERING INFORMATION (Part Number)												
Р	RV][6	В	B	AB	G	X	E	8 1	7	5 0 2	
MODEL	STYLE		В	USHIN	G	LOCATING PEG		S	HAFT		LEADS	PACKAGING	RESISTANCE CODE/ TOLERANCE/ TAPER OR SPECIAL
PRV6	S = Standard A = Audio		Ø	L	Old codes	0 = Without $A = 45^{\circ}$		ø	L	Old codes	X = PCB	Depending of body and shaft	Resistance: From
	B = Body length	А	1/4	1/4	6	L = 30° R = 180°	AA	3	9.5	K	pins (old	construction: B12 = Box 15 pcs	200 = 20 Ω to 106 = 10 MΩ
	C = Audio	В	1/4	3/8	61	round	AB	3	12.5	М	code	B12 = B0x 13 pcs B15 = Box 20 pcs	for
	and body	С	1/4	1/2	62	(see locating	AJ	3	22	R	W)	B17 = Box 25 pcs	linear cermet
	length	D	1/4	3/8	61H	peg table above)	BA	1/8	9.5	CK	Y = Solder	B25 = Box 50 pcs	Tolerance:
		Е	1/4	1/2	62H	a	BB	1/8	12.5	CM	lugs		standard
		Н	7	6.5	6Q		BG	1/8	16	CD			M = 20 % on request
		Ι	7	9.5	61Q		BJ	1/8	22	CR			K = 10 % or
		J	7	6.5	6QP		EA	4	9.5	Е			J = 5 %
		к	7	9.5	61QP		EB	4	12.5	F			Taper: A, L, F
		S	7	9.5	61QH		EJ	4	22	G			or
		S	7	9.5	61QPH		AP	CL	istom s	shaft			special code
								all ar	e slotte	ed			given by Vishay

PART	PART NUMBER DESCRIPTION (for information only using old codes)												
PRV S 61 W CD 5K 20 % A BO										e3			
MODEL	BUSHING	LEADS	SPECIAL	SHAFT	VALUE	TOLERANCE	TAPER	SPECIAL	PACKAGING	SPECIAL	AP N°	SPECIAL	LEAD FINISH

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.