

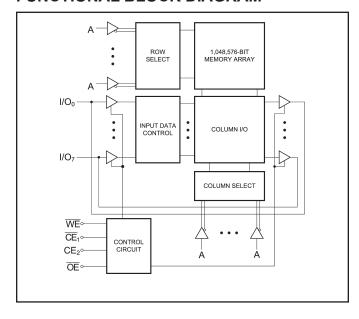
ULTRA LOW POWER 128K X 8 CMOS STATIC RAM

- V_{cc_}Current (Commercial/Industrial)
 - Operating: 10mA/12mA
 - CMOS Standby: 10μA/10μA
- Access Times
 - -55/70 (Commercial or Industrial)
- Single 3.3 Volts ± 0.3V Power Supply
- Easy Memory Expansion Using $\overline{\rm CE}_{\rm 1,}$ ${\rm CE}_{\rm 2}$ and $\overline{\rm OE}$ Inputs
- Common Data I/O

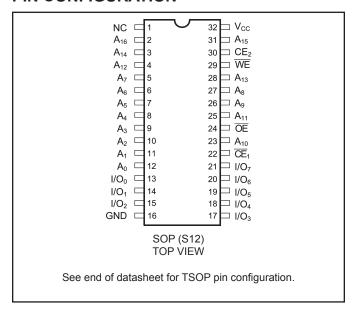
- **■** Three-State Outputs
- **■** Fully TTL Compatible Inputs and Outputs
- Advanced CMOS Technology
- Automatic Power Down
- Packages
 - —32-Pin 445 mil SOP
 - -32-Pin TSOP

DESCRIPTION

The P3C1024L is a 1,048,576-bit low power CMOS static RAM organized as 128Kx8. The CMOS memory requires no clocks or refreshing, and has equal access and cycle times. Inputs are fully TTL-compatible. The RAM operates from a single $3.3V \pm 0.3V$ tolerance power supply.


Access times of 55 ns and 70 ns are availale. CMOS is utilized to reduce power consumption to a low level.

The P3C1024L device provides asynchronous operation with matching access and cycle times. Memory


locations are specified on address pins A_0 to A_{16} . Reading is accomplished by device selection $(\overline{CE}_1 \text{ low and } CE_2 \text{ high})$ and output enabling (\overline{OE}) while write enable (\overline{WE}) remains HIGH. By presenting the address under these conditions, the data in the addressed memory location is presented on the data input/output pins. The input/output pins stay in the HIGH Z state when either \overline{CE}_1 or \overline{OE} is HIGH or \overline{WE} or \overline{CE}_2 is LOW.

The P3C1024L is packaged in a 32-pin TSOP and 445 mil SOP.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

RECOMMENDED OPERATING TEMPERATURE & SUPPLY VOLTAGE

Temperature Range (Ambient)	Supply Voltage
Commercial (0°C to 70°C)	201/21/2261/
Industrial (-40°C to 85°C)	$3.0V \le V_{CC} \le 3.6V$

MAXIMUM RATINGS(1)

Stresses greater than those listed can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this data sheet. Exposure to Maximum Ratings for extended periods can adversely affect device reliability.

Sym	Parameter	Min	Max	Unit
V _{cc}	Supply Voltage with Respect to GND	-0.3	3.9	V
V _{TERM}	Terminal Voltage with Respect to GND	-0.3	V _{cc} + 0.3	V
T _A	Operating Ambient Temperature	-55	125	°C
S _{TG}	S _{TG} Storage Temperature		150	°C
I _{OUT}	I _{OUT} Output Current into Low Outputs		20	mA
I _{LAT}	Latch-up Current	> 200		mA

DC ELECTRICAL CHARACTERISTICS

(Over Recommended Operating Temperature & Supply Voltage)(2)

Sym	Parameter	Test Conditions	Min	Max	Unit	
V _{OH}	Output High Voltage (I/O ₀ - I/O ₇)	$I_{OH} = -1 \text{mA}, V_{CC} = 3.0 \text{V}$	2.4		V	
V _{OL}	Output Low Voltage (I/O ₀ - I/O ₇)	I _{OL} = 2.1mA, V _{CC} = 3.0V		0.4	V	
V _{IH}	Input High Voltage		2.2	V _{CC} + 0.3	V	
V _{IL}	Input Low Voltage		-0.3	0.8	V	
	Innert Lankage Comment	INE	-2	+2	μА	
I _{LI}	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$	-1	+1		
	Outrot I calcada Coment	$GND \le V_{OUT} \le V_{CC}$, IND	-2	+2		
I _{LO}	Output Leakage Current	$\overline{CE}_1 \ge V_{IH} \text{ or } CE_2 \le V_{IL}$	-1	+1	μA	
I _{SB}	V _{CC} Current TTL Standby Current (TTL Input Levels)	$V_{CC} = 3.6V$, $I_{OUT} = 0$ mA $\overline{CE}_1 = V_{IH}$ or $CE_2 = V_{IL}$		3	mA	
I _{SB1}	V _{cc} Current CMOS Standby Current (CMOS Input Levels)	V_{CC} = 3.6V, I_{OUT} = 0 mA $\overline{CE}_1 \ge V_{CC}$ -0.2V, $CE_2 \le 0.2V$		10	μA	

CAPACITANCES⁽⁴⁾

 $(V_{CC} = 5.0V, T_A = 25^{\circ}C, f = 1.0 MHz)$

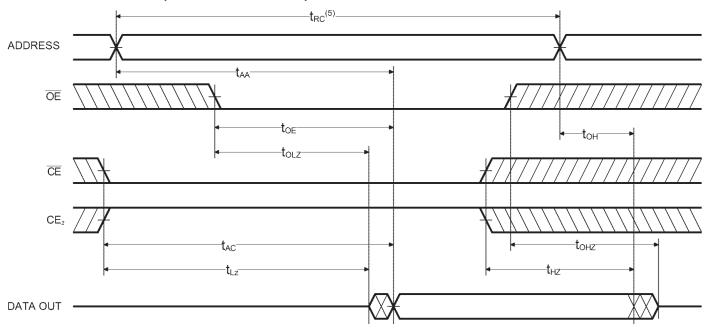
Symbol	Parameter	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	V _{IN} =0V	8	pF
C _{OUT}	Output Capacitance	V _{OUT} =0V	9	pF

POWER DISSIPATION CHARACTERISTICS VS. SPEED

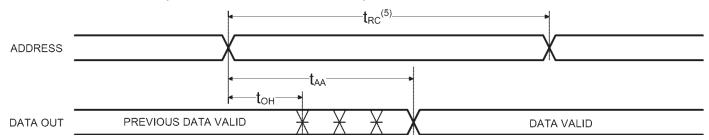
Symbol	Parameter	Temperature Range	-55	-70	Unit
	Dynamic Operating Current	Commercial	10	8	mA
l _{cc}		Industrial	12	10	mA

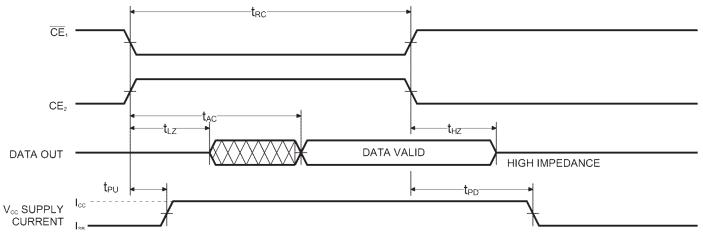
^{*}Tested with outputs open and all address and data inputs changing at the maximum write-cycle rate.

The device is continuously enabled for writing, i.e., $CE_2 \ge V_{IH}$ (min), \overline{CE}_1 and $\overline{WE} \le V_{IL}$ (max), \overline{OE} is high. Switching inputs are 0V and 3V.


AC ELECTRICAL CHARACTERISTICS - READ CYCLE

(Over Recommended Operating Temperature & Supply Voltage)

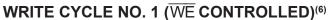

Cumbal	Barameter	-	55	-	-70	
Symbol	Parameter	Min	Max	Min	Max	Unit
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address Access Time		55		70	ns
t _{AC}			55		70	ns
t _{oh}	Output Hold from Address Change	10		10		ns
t _{LZ}	Chip Enable to Output in Low Z	10		10		ns
t _{HZ}	Chip Disable to Output in High Z		20		25	ns
t _{OE}	Output Enable Low to Data Valid		25		35	ns
t _{OLZ}	Output Enable Low to Low Z	5		5		ns
t _{OHZ}	Output Enable High to High Z		20		25	ns
t _{PU}	Chip Enable to Power Up Time	0		0		ns
t _{PD}	Chip Disable to Power Down Time		55		70	ns

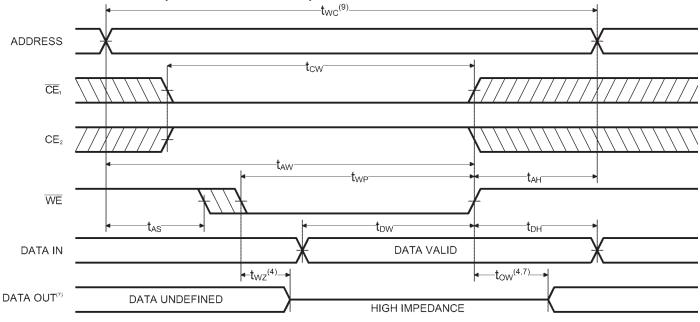

READ CYCLE NO. 1 (OE CONTROLLED)(1)

READ CYCLE NO. 2 (ADDRESS CONTROLLED)

READ CYCLE NO. 3 (CECONTROLLED)

Notes:

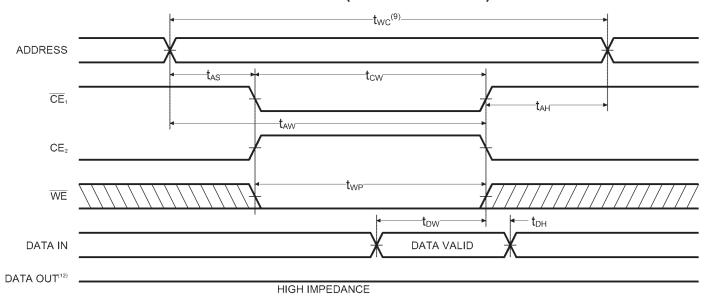

- 1. WE is HIGH for READ cycle.
- 2. $\overline{\text{CE}}_1$ and $\overline{\text{OE}}$ is LOW, and CE_2 is HIGH for READ cycle.
- 3. ADDRESS must be valid prior to, or coincident with later of $\overline{\text{CE}}_1$ transition LOW or $\overline{\text{CE}}_2$ transition HIGH.
- 4. Transition is measured \pm 200 mV from steady state voltage prior to change, with loading as specified in Figure 1. This parameter is sampled and not 100% tested.
- READ Cycle Time is measured from the last valid address to the first transitioning address.



AC CHARACTERISTICS - WRITE CYCLE

(Over Recommended Operating Temperature & Supply Voltage)

Cumbal	Parameter	-	55	-	70	Unit
Symbol	Parameter	Min	Max	Min	Max	Unit
t _{wc}	Write Cycle Time	55		70		ns
t _{cw}	Chip Enable Time to End of Write	40		60		ns
t _{AW}	Address Valid to End of Write	40		60		ns
t _{AS}	Address Set-up Time	0		0		ns
t _{wp}	Write Pulse Width	40		50		ns
t _{AH}	Address Hold Time	0		0		ns
t _{DW}	Data Valid to End of Write	25		30		ns
t _{DH}	Data Hold Time	0		0		ns
t _{wz}	Write Enable to Output in High Z		20		25	ns
t _{ow}	Output Active from End of Write	10		10		ns



Notes

- 6. $\overline{\text{CE}}_{\scriptscriptstyle{1}}$ and $\overline{\text{WE}}$ are LOW and $\text{CE}_{\scriptscriptstyle{2}}$ is HIGH for WRITE cycle.
- 7. OE is LOW for this WRITE cycle to show twz and tow.
- 8. If $\overline{\text{CE}}_1$ goes HIGH or CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high impedance state.
- 9. Write Cycle Time is measured from the last valid address to the first transitioning address.

TIMING WAVEFORM OF WRITE CYCLE NO.2 (CE CONTROLLED)(6)

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Fig. 1 and 2

TRUTH TABLE

Mode	Œ _₁	CE ₂	ŌĒ	WE	I/O	Power
Standby	Н	Х	Χ	Х	High Z	Standby
Standby	Х	L	Χ	Х	High Z	Standby
D _{OUT} Disabled	L	Н	Н	Н	High Z	Active
Read	L	Н	L	Н	D _{OUT}	Active
Write	L	Н	Х	L	D _{IN}	Active

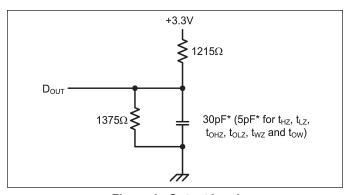


Figure 1. Output Load

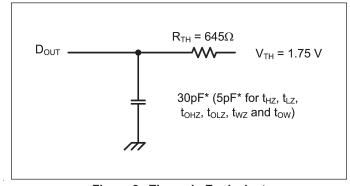


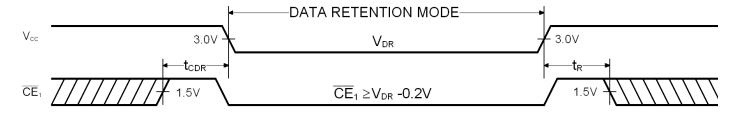
Figure 2. Thevenin Equivalent

Note:

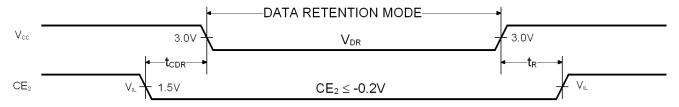
Because of the high speed of the P3C1024L, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the $V_{\rm CC}$ and ground planes directly up to the contactor fingers. A 0.01 μF high frequency capacitor is also required between $V_{\rm CC}$ and ground.

To avoid signal reflections, proper termination must be used; for example, a 50Ω test environment should be terminated into a 50Ω load with 1.75V (Thevenin Voltage) at the comparator input, and a 595Ω resistor must be used in series with D_{OUT} to match 645Ω (Thevenin Resistance).

^{*} including scope and test fixture.

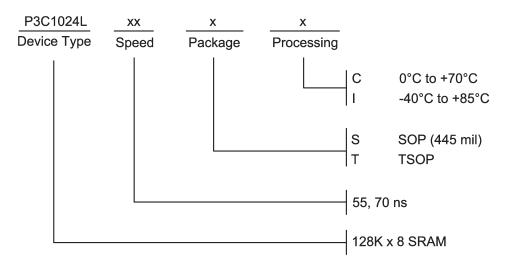


DATA RETENTION


Symbol	Parameter	Test Conditions	Min	Max	Unit
V _{DR}	V _{cc} for Data Retention	$\overline{\overline{CE}}_1 \ge V_{CC}$ -0.2V, $\overline{CE}_2 \le 0.2V$, $V_{IN} \ge V_{CC}$ -0.2V or $V_{IN} \le 0.2V$	2.0		V
I _{CCDR} (1)	Data Retention Current	V _{DR} = 2.0V		10	μA
t _{CDR}	Chip Deselect to Data Retention Time	See Retention Waveform	0		ns
t _R	Operating Recovery Time ⁽²⁾		100		μA

 $1. \ \ \overline{CE}_{_{1}} \geq V_{_{DR}} - 0.2V, \ CE_{_{2}} \geq V_{_{DR}} - 0.2V \ or \ CE_{_{2}} \leq 0.2V; \ or \ \overline{CE}_{_{1}} \leq 0.2V, \ CE_{_{2}} \ \ 0.2V; \ V_{_{IN}} \geq V_{_{DR}} - 0.2V \ or \ V_{_{IN}} \leq 0.2V \ or \ V_{_{IN}} \leq$

LOW V_{cc} DATA RETENTION WAVEFORM 1 (\overline{CE}_1 CONTROLLED)


LOW $V_{\rm cc}$ DATA RETENTION WAVEFORM 2 (CE $_{\scriptscriptstyle 2}$ CONTROLLED)

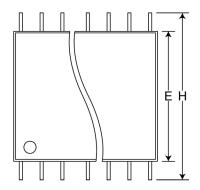
Document # **SRAM132** REV A

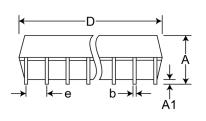
ORDERING INFORMATION

SELECTION GUIDE

The P3C1024L is available in the following temperature, speed and package options.

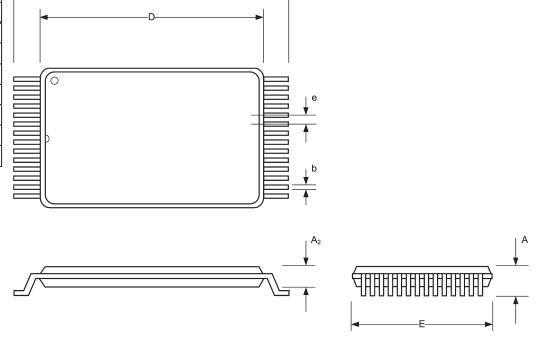
Tompovotuvo Bongo	Dookogo	Spe	eed
Temperature Range	Package	-55	-70
Commercial	Plastic SOP (445 mil)	-55SC	-70SC
	TSOP	-55TC	-70TC
Industrial	Plastic SOP (445 mil)	-55SI	-70SI
	TSOP	-55TI	-70TI


TSOP PIN CONFIGURATION



Pkg#	S'	12
# Pins	32 (445 Mil)	
Symbol	Min	Max
Α	-	0.118
A1	0.004	-
A2	0.101	0.111
b	0.014	0.020
С	0.006	0.012
D	0.793	0.817
е	0.050	BSC
E	0.440	0.450
Н	0.546	0.566
L	0.023	0.039
L1	0.047	0.063
α	0°	4°

SOIC/SOP SMALL OUTLINE IC PACKAGE



Pkg #	Т3	
# Pins	32	
Symbol	Min	Max
Α	-	0.048
A_2	0.037	0.042
b	0.006	0.011
D	0.720	0.729
Е	0.307	0.323
е	0.50 mm BSC	
H _D	0.779	0.796

TSOP THIN SMALL OUTLINE PACKAGE (8 x 20 mm)

REVISIONS

DOCUMENT NUMBER	MBER SRAM 132	
DOCUMENT TITLE	P3C1024L ULTRA LOW POWER 128K x 8 CMOS STATIC RAM	

REV	ISSUE DATE	ORIGINATOR	DESCRIPTION OF CHANGE
OR	April 2006	JDB	New Data Sheet
Α	Feb 2009	JDB	Updated SOIC/SOP package drawing, new datasheet format