Specifications

UL file: E64911 - CSA file: LR57744

Connectors according to: MIL C24308 - NFC93425 - HE507

The new Amphenol D'Sub TW Hybrid Series permits a mix of contacts including signal, power, shielded, high voltage and fiber optics in the same housing with 18 different contacts arrangements.

This new economic series was developed from combination military series, and has improved features:

- new contacts
- new high temperature black thermoplastic insert
- PCB configurations come preloaded with fixed contacts and brackets.

These connectors are supplied with screw - machined contacts which are fixed in the insulator.

A complete range of housings in also available for cable application.

> A full range of arrangements compatible with reflow process

CLASS II
$0.4 \mu m\left(16 \mu^{\prime \prime}\right)$ Au contacts gold plating 200 mating cycles

Types	Shells and plating
77 TW	Tin plated shell Male and female
717 TW	Tin plated shell with dimples Male only
	Nore: Tm plated stels standera

CLASS I
$0.76 \mu m\left(30 \mu{ }^{\prime \prime}\right)$ Au contacts gold plating
500 mating cycles

Types	Shells and plating
177 TW	Tin plated shell Male and female
777 TW	Tin plated shell with dimples Male only
	nore: Troplatad stells samand

Housing arrangements

Male front view

Arrangement \qquad Shell size \qquad			
Arrangement \qquad Shell size \qquad		5W5 B	9W4 B
Arrangement \qquad Shell size \qquad			
Arrangement \qquad Shell size \qquad			
Arrangement \qquad Shell size \qquad		8W8 C	
Arrangement Shell size			

Shell size dimensions

Shell size	$\begin{aligned} & \text { Contact } \\ & \text { P: Piphint } \end{aligned}$	$\underset{\substack{\mathrm{A} \\ \text { (208) } \\(1.010)}}{ }$	$\underset{\substack{\text { B } \\(0.200 \\(0,-2003)}}{ }$	$\left.\begin{array}{c} \mathbf{B}^{\prime \prime} \\ (+2,0200 \\ (+, 020) \end{array}\right)$	$\underset{\substack{\text { c.10 } \\(2002) \\(2002)}}{ }$		$\left.\begin{array}{\|c} \mathrm{D}^{\prime} \\ \text { (0.2000 } \\ 1+501000 \end{array}\right)$	$\underset{\substack{\mathrm{E}, 20 \\(2008)}}{\mathrm{E}, 0}$		$\begin{gathered} F^{\prime} \\ (0101020 \\ (0.02020 \end{gathered}$	$\left\lvert\, \begin{array}{\|c\|} \hline \mathbf{G} \\ +0.100-0.200 \\ +0.041 \\ \hline \end{array}\right.$		$\begin{gathered} \mathrm{H} \\ -0.1010 .090 \\ 0.004 /-015 \end{gathered}$	
E	P	$-\begin{gathered} 30.7 \\ \left(1.209^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 16.8 \\ \left(.661{ }^{1}\right) \end{gathered}$	$\begin{gathered} 25.0 \\ \left(.984^{\prime}\right) \end{gathered}$		$\begin{gathered} 8.2 \\ \left(.323^{\circ}\right) \end{gathered}$	$\begin{gathered} 12.4 \\ \left(.488^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 10.9 \\ \left(.429^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 5.9 \\ \left(.232^{\prime \prime}\right) \end{gathered}$	$-\begin{gathered} 19.4 \\ \left(.764^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 11.0 \\ \left(.433^{\prime \prime}\right) \end{gathered}$
	S		$\begin{gathered} 16.4 \\ \left(.646^{\prime \prime}\right) \end{gathered}$			$\begin{array}{\|c} 8.0 \\ \left(.315^{\prime \prime}\right) \end{array}$			$\begin{gathered} 11.1 \\ \left(.43 T^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 6.2 \\ \left(.244^{*}\right) \end{gathered}$			
A	P	$-\begin{gathered} 39.0 \\ \left(1.535^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 25.1 \\ \left(.988^{\prime \prime}\right. \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} 33.3 \\ \left(1.311^{\prime \prime}\right) \end{array}\right.\right)$		$\begin{gathered} 8.2 \\ \left(323^{*}\right) \\ \hline \end{gathered}$	$\begin{gathered} 12.4 \\ \left(.488^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 10.9 \\ \left(.429^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 5.9 \\ \left(.232^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 27.7 \\ (1.091) \end{gathered}$	$\begin{gathered} 11.0 \\ \left(.433^{\prime \prime}\right) \end{gathered}$
	S		$\begin{array}{\|c\|} \hline 24.8 \\ \left(.976^{\prime}\right) \\ \hline \end{array}$			$\begin{gathered} 8.0 \\ \left(.315^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 11.1 \\ \left(.437^{\prime \prime}\right) \end{gathered}$		$\begin{array}{\|c} 6.2 \\ \left(.244^{*}\right) \end{array}$			
B	P	$\begin{gathered} 52.9 \\ \left(2.083^{\prime}\right) \end{gathered}$		$\begin{gathered} 38.8 \\ \left(1.528^{\prime \prime}\right) \end{gathered}$	$\left\{\begin{array}{c} 47.0 \\ \left(1.850^{\prime \prime}\right) \end{array}\right.$		$\begin{gathered} 8.2 \\ \left(.323^{*}\right) \\ \hline \end{gathered}$	$\begin{gathered} 12.4 \\ \left(.488^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 11.0 \\ \left(.433^{\prime \prime}\right) \end{gathered}$		$\begin{array}{\|c} \hline 5.8 \\ \left(.228^{\prime \prime}\right) \\ \hline \end{array}$	$-\begin{gathered} 41.4 \\ \left(1.630^{\circ}\right) \end{gathered}$	$\begin{gathered} 11.0 \\ \left(.433^{\prime \prime}\right) \end{gathered}$
	S		$\begin{array}{c\|} \hline 38.5 \\ \left(1.513^{\prime \prime}\right) \end{array}$			$\begin{gathered} 8.0 \\ \left(.315^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 11.1 \\ \left(.437^{\prime}\right) \end{gathered}$		$\begin{array}{\|c\|} \hline 6.2 \\ \left(.244^{*}\right) \end{array}$			
C	P	$\begin{gathered} 69.2 \\ \left(2.724^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 55.3 \\ \left(2.177^{\prime}\right) \end{gathered}$	$0 \begin{gathered} 63.5 \\ \left(2.500^{\prime \prime}\right) \end{gathered}$		$\begin{array}{\|c} \hline 8.2 \\ \left(.323^{*}\right) \end{array}$	$\begin{gathered} 12.4 \\ \left(.488^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} \hline 11.0 \\ \left(.433^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 5.8 \\ \left(.228^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 57.9 \\ \left(2.280^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 11.0 \\ \left(.433^{\prime \prime}\right) \end{gathered}$
	S		$\begin{gathered} 54.9 \\ \left(2.161^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 8.0 \\ \left(.3155^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 11.1 \\ \left(.437^{\prime}\right) \end{gathered}$		$\begin{array}{\|c} \hline 6.2 \\ \left(.244^{*}\right) \end{array}$			
D	P	$\left.\begin{array}{c} 66.8 \\ \left(2.630^{\prime \prime}\right) \end{array}\right)$		$\begin{gathered} 52.7 \\ \left(2.075^{\circ}\right) \end{gathered}$	$2 \left\lvert\, \begin{gathered} 61.1 \\ \left(2.406^{\prime \prime}\right) \end{gathered}\right.$		$\begin{gathered} 11.0 \\ \left(.433^{*}\right) \\ \hline \end{gathered}$	$\begin{gathered} 15.2 \\ \left(.598^{\prime \prime}\right) \end{gathered}$		$\begin{array}{\|c\|} \hline 11.0 \\ \left(.433^{\prime \prime}\right) \end{array}$		$\begin{array}{\|c} 5.8 \\ \left(.228^{\prime \prime}\right) \end{array}$	$\left.\left\lvert\, \begin{array}{c} 55.5 \\ \left(2.185^{n}\right) \end{array}\right.\right)$	$\begin{gathered} 13.8 \\ \left(.543^{\prime \prime}\right) \end{gathered}$
	S		$\begin{gathered} 52.5 \\ \left(2.067^{\prime}\right) \end{gathered}$			$\begin{gathered} 10.9 \\ \left(.429^{\prime \prime}\right) \\ \hline \end{gathered}$			$\begin{array}{\|c\|} \hline 11.1 \\ \left(.437^{\prime}\right) \end{array}$		$\begin{gathered} 6.2 \\ \left(.244^{\prime}\right) \end{gathered}$			

Panel cutouts

Optimal cutout for rear mounting

Standard cutout

$\begin{aligned} & \text { Shell } \\ & \text { size } \end{aligned}$	Mounting method	$\begin{gathered} \text { A } \\ (\pm 020 \\ (+008) \end{gathered}$	$\begin{gathered} \text { B } \\ +0.20 \\ (\pm .008) \end{gathered}$	$\underset{\substack{10.20 \\(+.008)}}{\mathbf{C}}$	$\begin{gathered} \mathbf{D} \\ (\pm .200 \\ (\pm .000) \end{gathered}$	$\underset{\substack{ \pm .20 \\(土 .008)}}{\mathbf{E}}$	$\begin{gathered} \mathbf{F} \\ (\pm .200 \\ (\pm .008) \end{gathered}$	$\begin{gathered} \mathbf{G} \\ (\pm .020 \\ (\pm .008) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \substack{0.020 \\ 1=0009} \end{gathered}$	$\begin{gathered} \pm \\ \left.\begin{array}{c} 10.20 \\ (土 .008) \end{array}\right) \end{gathered}$
E	Front	$\begin{gathered} 22.2 \\ \left(.874^{*}\right) \end{gathered}$	$\begin{gathered} 11.1 \\ \left(.437^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 25.0 \\ \left(.984^{\circ}\right) \end{gathered}$	$\begin{gathered} 12.5 \\ \left(.492^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 13.0 \\ \left(.512^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 6.5 \\ \left(.256^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.0 \\ \left(.19 \theta^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 1.5 \\ \left(.059^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.1 \\ \left(.083^{*}\right) \end{gathered}$
	Rear	$\begin{gathered} 20.5 \\ \left(.807^{\circ}\right) \end{gathered}$	$\begin{gathered} 10.2 \\ \left(.402^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 11.4 \\ \left(.449^{*}\right) \end{gathered}$	$\stackrel{5.7}{\left(.224^{\prime \prime}\right)}$			$=\begin{gathered} 3.4 \\ \left(.0134^{\prime \prime}\right) \end{gathered}$
A	Front	$\begin{gathered} 30.5 \\ \left(1.201^{\prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 15.3 \\ \left(.602^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 33.3 \\ \left(1.311^{\prime}\right) \end{gathered}$	$\begin{gathered} 16.7 \\ \left(.657^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 13.0 \\ \left(.512^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 6.5 \\ \left(.256^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 3.0 \\ \left(.118^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 1.5 \\ \left(.059^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.1 \\ \left(.083^{\prime}\right) \\ \hline \end{gathered}$
	Rear	$\begin{gathered} 28.8 \\ \left(1.134^{\prime}\right) \end{gathered}$	$\begin{aligned} & 14.4 \\ & \left(.567^{\prime \prime}\right) \end{aligned}$			$\begin{aligned} & 11.4 \\ & \left(.449^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 5.7 \\ \left(.224^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 3.4 \\ \left(.0134^{\prime \prime}\right) \end{gathered}$
B	Front	$\begin{gathered} 44.3 \\ \left(1.744^{\prime}\right) \end{gathered}$	$\begin{gathered} 22.1 \\ \left(.870^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 47.0 \\ \left(1.850^{*}\right) \end{gathered}$	$\begin{gathered} 23.5 \\ \left(.925^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 13.0 \\ \left(.512^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 6.5 \\ \left(.256^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.0 \\ \left(.118^{n}\right) \end{gathered}$	$\begin{gathered} 1.5 \\ \left(.059^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.1 \\ \left(.083^{*}\right) \end{gathered}$
	Rear	$\begin{gathered} \hline 42.5 \\ \left(1.673^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 21.3 \\ \left(.839^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 11.4 \\ \left(.449^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 5.7 \\ \left(.224^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 3.4 \\ \left(.0134^{\prime}\right) \end{gathered}$
C	Front	$\begin{gathered} 60.7 \\ \left(2.390^{\circ}\right) \end{gathered}$	$\begin{gathered} 30.4 \\ \left(1.197^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 63,5 \\ \left(2.500^{*}\right) \end{gathered}$	$\begin{gathered} 31,7 \\ \left(1,248^{\prime}\right) \end{gathered}$	$\begin{gathered} 13.0 \\ \left(.512^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 6.5 \\ \left(.256^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.0 \\ \left(.118^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 1.5 \\ \left(.059^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.1 \\ \left(.083^{\prime \prime}\right) \end{gathered}$
	Rear	$\begin{gathered} 59.1 \\ \left(2.327^{\prime}\right) \end{gathered}$	$\begin{gathered} 29.5 \\ \left(1.161^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 11.4 \\ \left(.449^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 5.7 \\ \left(.224^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 3.4 \\ \left(.0134^{\prime \prime}\right) \end{gathered}$
D	Front	$\begin{gathered} 58.3 \\ \left(2.295^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 29.2 \\ \left(1.150^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 61.1 \\ \left(2.406^{*}\right) \end{gathered}$	$\begin{gathered} 30.6 \\ \left(1.205^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 15.8 \\ \left(.622^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 7.9 \\ \left(.311^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.0 \\ \left(.118^{\prime \prime}\right) \end{gathered}$	1.5	$\begin{gathered} 2.1 \\ \left(.083^{*}\right) \end{gathered}$
	Rear	$\begin{gathered} 56.3 \\ \left(2.217^{\prime}\right) \end{gathered}$	$\begin{gathered} 28.2 \\ \left(1.110^{\prime \prime}\right) \end{gathered}$			$\begin{aligned} & 14.1 \\ & \left(.555^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 7.1 \\ \left(.280^{\prime \prime}\right) \end{gathered}$		(.059")	$\begin{gathered} 3.4 \\ \left(.0134^{\prime \prime}\right) \end{gathered}$

Straight connector footprint

Signal tail 0.6 mm Dia. (. 0236°)
$1.6 \mathrm{~mm}\left(.063^{\prime \prime}\right)$ PCB
For other PCB thickness: consult factory.

Description	Dimensions		
		a	b
Power (.126" tail dia.)	1	4.50 mm $\left(.177^{\prime \prime}\right)$	7.2 mm $\left(.283^{\prime \prime}\right)$
Power (.0787" tail dia.)	1	4.50 mm $\left(.177^{\prime \prime}\right)$	7.2 mm $\left(.283^{\prime \prime}\right)$
Shielded	3	4.00 mm $\left(.157^{\prime \prime}\right)$	7.2 mm $\left(.283^{\prime \prime}\right)$
Signal	2	5.00 mm $\left(.196^{\prime \prime}\right)$	11.50 mm $\left(.453^{\prime \prime}\right)$

Straight contact combinations

Arrangement with signal contacts

P 2SY	Power 2 mm DIA. $\left(.0787^{\prime \prime}\right)$ $(10$ to 20 A$)$ and signal

CSY	Shielded and signal

SY	Signal only

Arrangement without signal contacts 3W3-5W5-8W8

	P 2Y
	Power only 2 mm DIA. (.0787") $(10$ to 20 A) $)$

Right angle connector footprint

Signal tail 0.6 mm Dia. (0236°) 1.6 mm (.063 ${ }^{\text { }}$) PCB For other PCB thickness: consult factory.		Europe			Mix			MIL		
		HE 5 pattern = - Europ. height - Europ. footprint pitch between 2 rows: 100°			Mixed pattern = - MIL height - Europ. footprint pitch between 2 rows: 100°			MIL pattern = - MIL height - MIL footprint pitch between 2 rows: 112^{*}		
Description		a	b	C	a	b	C	a	b	C
Shielded	1	-	-	-	$\begin{gathered} 10.30 \mathrm{~mm} \\ \left(.406^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 6.30 \mathrm{~mm} \\ & \left(.248^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 10.00 \mathrm{~mm} \\ & \left(.394^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 10.30 \mathrm{~mm} \\ & \left(.406^{\prime}\right) \end{aligned}$	$\begin{aligned} & 6.30 \mathrm{~mm} \\ & \left(.248^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 10.00 \mathrm{~mm} \\ & \left(.394^{\prime \prime}\right) \end{aligned}$
Signal	2	$\begin{gathered} 10.30 \mathrm{~mm} \\ \left(.406^{\mathrm{n}}\right) \end{gathered}$	$\begin{aligned} & 7.20 \mathrm{~mm} \\ & \left(.283^{\prime \prime}\right) \end{aligned}$	$\left\|\begin{array}{c} 11.20 \mathrm{~mm} \\ \left(.441^{\prime}\right) \end{array}\right\|$	$\left[\begin{array}{l} 10.30 \mathrm{~mm} \\ \left(.406^{\circ}\right) \end{array}\right.$	$\begin{aligned} & 6.30 \mathrm{~mm} \\ & \left(.248^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 9.50 \mathrm{~mm} \\ & \left(.374^{4}\right) \end{aligned}$	$\begin{aligned} & 8.10 \mathrm{~mm} \\ & \left(.319^{\prime}\right) \end{aligned}$	$\begin{aligned} & 6.30 \mathrm{~mm} \\ & \left(.248^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 9.50 \mathrm{~mm} \\ & \left(.374^{\prime \prime}\right) \end{aligned}$
Power (.0787" tail dia.)	3	$\begin{aligned} & 11.57 \mathrm{~mm} \\ & \left(.456^{*}\right) \end{aligned}$	$\begin{aligned} & 7.20 \mathrm{~mm} \\ & \left(.283^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 10.50 \mathrm{~mm} \\ & \left(.413^{\mathrm{o}}\right) \end{aligned}$	$\begin{aligned} & 11.57 \mathrm{~mm} \\ & \left(.456^{\circ}\right) \end{aligned}$	$\begin{aligned} & 6.30 \mathrm{~mm} \\ & \left(.248^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 9.50 \mathrm{~mm} \\ & \left(.374^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 9.52 \mathrm{~mm} \\ & \left(.375^{\circ}\right) \end{aligned}$	$\begin{aligned} & 6.30 \mathrm{~mm} \\ & \left(.248^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 9.50 \mathrm{~mm} \\ & \left(.374^{\prime \prime}\right) \end{aligned}$
Power (.126" tail dia.)	3	$\begin{aligned} & 21.46 \mathrm{~mm} \\ & \left(.845^{\circ}\right) \end{aligned}$	$\begin{aligned} & 7,20 \mathrm{~mm} \\ & \left(.283^{\prime \prime}\right) \end{aligned}$	$\begin{array}{\|l\|} 10.50 \mathrm{~mm} \\ \left(.413^{\prime}\right) \end{array}$	$\begin{aligned} & 21.46 \mathrm{~mm} \\ & \left(.845^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 6.30 \mathrm{~mm} m \\ & \left(.248^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 9.50 \mathrm{~mm} \\ & \left(.374^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 21.46 \mathrm{~mm} \\ & \left(.845^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 6.30 \mathrm{~mm} \\ & \left(.248^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 9.50 \mathrm{~mm} \\ & \left(.374^{\prime \prime}\right) \end{aligned}$

Note: above dimensions correpond to sizes E to C. Consult factory for D sizes.
Connector comes equiped with contacts and brackets.

Right angle contacts combinations

Arrangements with signal contacts

Arrangement without signal contacts 3W3-5W5-8W8

European footprint	Mixed footprint	MIL (U.S.) footprint	Size 8 and 20 contacts
± 7			
EP3SV	HP3SV	MP3SV	Power 3.2 mm DIA. (. $126^{\prime \prime}$) (20 to 40 A) and signal

European footprint	Mixed footprint	MIL (U.S.) footprint	Size 8 contacts only	
EP3V	HP3V	MP3V	Power only 3.2 mm DIA. (.126") (20 to 40 A$)$	

EP2SV	HP2SV	MP2SV	Power 2 mm DIA. (.0787") 20 A) and signal

EP2V	HP2V	MP2V	Power only 3.2 mm DIA. $\left(126^{\prime \prime}\right)$ $(10$ to 20 A$)$

-	HCSV	MCSV	Shielded and signal

-	HCV	MCV	Shielded only

Mounting options

Right angle version
Connectors come equiped with metal brackets

BLANK: 3,10 (.122") dia mounting hole

RM6: metal brackets + boardiock

Straight version

BLANK: 3,10 (.122") dia mounting hole

RM54: RM5 4.40 threaded RM53: RM5 M3 threaded

RM84: RM8 4.40 threaded RM83: RM8 M3 threaded

A514: blind mating system

FM: float mounting system

Straight and right angle version

4R: $\mathbf{4 . 4 0}$ rear nut
3R: M3 rear nut

4F: $\mathbf{4 . 4 0}$ front female screwiock 3F: M3 front female screwlock

High power contacts

Solder cup version

P/N		Current	Dimensions	
Plug	Socket		A mm (inch)	B mm (inch)
L17DM 53745-8	L17DM 53744-7	10 to 20 Amp.	1.80 (.071")	2.55 (.100")
L17DM 53745-7	L17DM 53744-6	20 to 30 Amp.	2.80 (.110")	3.70 (.145")
L17DM 53745-1	L17DM 53744-1	30 to 40 Amp.	4.80 (.189')	5.60 (.220")

Trim dimensions: $7.5 \mathrm{~mm}\left(.295^{\circ}\right)$

Crimp version

		Current		
Plug	Socket		A mm (inch)	B mm (inch)
L17DM 53745-208	L17DM 53744-207	10 to 20 Amp.	1.80 (.071")	2.55 (.100")
L17DM 53745-207	L17DM 53744-206	20 to 30 Amp.	2.80 (.110")	3.70 (.145")
L17DM 53745-201	L17DM 53744-201	30 to 40 Amp.	4.80 (.189')	5.60 (.220")

Trim dimensions: 7.5 mm (.295*)

Crimping tool for all sizes
17D479SP

Extraction tool for sizes 8 ets

Straight shielded contacts

Crimp ferrule/Inner solder

Type	P/N	Dimensions (inch)			Cable - RG	Trim dimensions (inch)		
		A Max	B	D		E	F	(
plug	L17DM 53740	18.8 (.740 ${ }^{\circ}$	23.6 (.929)	1.0 (.039 ${ }^{\circ}$	$178 \mathrm{~B} / \mathrm{U}$	7.9 (3117)	6.3 (248)	2 (.078)
plug	L17DM 53740-1	18.8 (.740)	23.6 (929)	1.7 (.066')	179 B/ $316 \mathrm{~B} / \mathrm{J}$	7.9 (311)	6.3 (248)	2 (078)
plug	L17DM 53740-3	21.5 (.846)	23.6 (929)	$28.8110{ }^{\circ}$	$180 \mathrm{~B} / \mathrm{U}$	9.5 (374)	7.9 (311)	$2\left(078^{\prime \prime}\right)$
plug	L17DM 53740-5	21.5 (846)	23.6 (9299)	3.2 (.126)	$58 \mathrm{C} / \mathrm{J}$	9.5 (374)	7.9 (311)	$2\left(078^{\prime \prime}\right)$
socket	L17DM 53742	18.8 (.740)	23.6 (.929)	1.0 (039 ${ }^{\text {\% }}$	$178 \mathrm{~B} / \mathrm{U}$	7.9 (311)	6.3 (248)	2 (078)
socket	L17DM 53742-1	18.8 (.740)	23,6 (929)	1.7 (.066')	$179 \mathrm{~B} / \mathrm{U} 316 \mathrm{~B} / \mathrm{U}$	7.9 (311)	6.3 (248)	2 (078)
socket	L17DM 53742-3	21.5 (.846)	23.6 (929)	2.8 (.110)	$180 \mathrm{~B} / \mathrm{U}$	9.5 (374)	7.9 (311)	2 (078)
socket	L17DM 53742-5	$21.5\left(.846{ }^{\circ}\right)$	23.6 (9229)	3.2 (126)	$58 \mathrm{C} / \mathrm{J}$	9.5 (374)	7.9 (311)	$2\left(078^{\prime \prime}\right)$

Ferrule and inner solder

Type	P/N	Dimensions (inch)			Cable - RG	Trim dimensions (inch)		
		A Max	B	D		E	F	-
short plug	L17DM 53740-5000	17.0 (669")	21.8 (858 ${ }^{\text {\% }}$	1.0 (.039 ${ }^{\text {² }}$	$178 \mathrm{~B} / \mathrm{U}$	7.9 (3117)	6.3 (248)	2 (078)
plug	L17DM 53740-5001	18.8 (.740)	23.6 (929)	1.7 (066')	179 B/U $316 \mathrm{~B} / \mathrm{U}$	7.9 (311)	6.3 (248)	2 (078)
plug	L17DM 53740-5002	21.5 (846)	26.3 (1.035)	$28(110)$	$180 \mathrm{~B} / \mathrm{U}$	9.5 (374)	7.9 (311)	$2\left(078^{\prime}\right)$
plug	L17DM 53740-5005	$21.5(846)$	26.3 (1.035")	3.2 (126)	58 CJU	9.5 (374)	7.9 (311)	$2(078)$
plug	L17DM 53740-5008	18.8 (740)	23.6 (929)	1.0 (.0397)	$178 \mathrm{~B} / \mathrm{U}$	7.9 (3117)	6.3 (248)	2 (078)
short socket	L17DM 53742-5000	17.0 (669)	21.8 (858)	1.0 (.0397)	$178 \mathrm{~B} / \mathrm{U}$	7.9 (3117)	6.3 (248 ${ }^{\circ}$	2 (078)
socket	L17DM 53742-5001	18.8(740)	23.6 (929)	1.7 (066)	179 B/U $316 \mathrm{~B} / \mathrm{U}$	7.9 (311)	6.3 (248)	2 (078)
socket	L17DM 53742-5002	21.5 (.846)	26.3 (1.035)	$28.8 .110)$	$180 \mathrm{~B} / \mathrm{U}$	9.5 (374)	7.9 (311)	2 (078)
socket	L17DM 53742-5004	21.5 (.846)	26.3 (1.035")	3.2 (126)	$58 \mathrm{C} / \mathrm{U}$	9.5 (374)	7.9 (3117)	2 (078)
socket	L17DM 53742-5006	18.8 (740)	23.6 (929)	1.0 (0397)	$178 \mathrm{~B} / \mathrm{U}$	7.9 (311)	6.3 (248)	2 (078)

Crimp ferrule/Inner solder

Type	P/N	Dimensions (inch)				Cable - RG		Trim dimensions (inch)	
		A Max		B	C	D			E
F									

Ferrule and inner solder

Type	P/N	Dimensions (inch)				Cable - RG	Trim dimensions (inch)		
		A Max	B	C	D		E	F	G
plug	L17DM 53741-5000	13.5 (531)	18.6 (.732)	12.5 (492)	1.0 (039')	178 B/U	$9.5\left(374^{4}\right)$	5.9 (232')	1.6 (0622)
plug	L17DM 53741-5001	13.5 (5317)	18.6 (732)	12.5 (.492')	1.7 (.066")	$179 \mathrm{~B} / \mathrm{U} 316 \mathrm{~B} / \mathrm{U}$	9.5 (374)	5.9 (232')	1.6 (062')
plug	L17DM 53741-5003	13.5 (.531)	18.6 (.732)	13.9 (547)	2.8 (110)	$180 \mathrm{~B} / \mathrm{U}$	10.7 (.421)	7.9 (311)	2.4 (0984)
plug	L17DM 53741-5004	13.5 (5317)	18.6 (732)	13.9 (547)	3.2 (126)	$58 \mathrm{C} / \mathrm{U}$	10.7 (421)	7.9 (311)	2.4 (094)
socket	L17DM 53743-5000	13.5 (5317)	18.6 (732)	12.5 (492')	1.0 (0397)	$178 \mathrm{~B} / \mathrm{U}$	9.5 (374)	5.9 (233')	1.6 (062 ${ }^{2}$)
socket	L17DM 53743-5001	13.5 (.5317)	18.6 (732)	12.5 (.492')	1.7 (066")	$179 \mathrm{~B} / \mathrm{U} 316 \mathrm{~B} / \mathrm{U}$	$9.5\left(374^{7}\right)$	5.9 (232')	1.6 (062 ${ }^{2}$)
socket	L17DM 53743-5003	13.5 (.531)	18.6 (.732)	13.9 (547)	2.8 (110)	$180 \mathrm{~B} / \mathrm{U}$	10.7 (421)	7.9 (3117)	2.4 (0947)
socket	L17DM 53743-5004	13.5 (.531)	18.6 (.732)	13.9 (547)	3.2 (126)	$58 \mathrm{C} / \mathrm{U}$	10.7 (421)	7.9 (311)	2.4 (094 ${ }^{4}$

Crimping tool

Hand crimp tool
227-0944 (without dies) (M 22 520/5-01)

RG cables	MIL reference	Amphenol P/N	dim. between 2 flat surface	
cavity A	cavity B			
RG 58 C/U	M 22 520/5-05	$2271221-05$	5.41	-
RG 178 B/U	M $22520 / 5-03$	$2271221-03$	-	2.67
RG 179 B/U	M $22520 / 5-03$	$2271221-03$	3.25	-
RG 180 B/U	M $22520 / 5-05$	$2271221-05$	-	4.52

Extraction tool

Crimping tool for all sizes
Amphenol ref: 227-0994 - MIL ref: M22520/5-01

Extraction tool for sizes 8 cts 17D429SP

Cabling instructions for shielded contacts

Straight crimp shielded contacts: inner solder contact outer crimp contact

Right angle crimp shielded contacts: inner solder contact outer crimp contact

Assembly method

- Slide the outer ring over the cable jacket. Trim the cable according to the recommended dimensions.
- Insert the cable dielectric and the center conductor inside the inner sleeve.
- Solder the central conductor to the shielded center contacts.

Slide the outer ring towards the inner sleeve ans recover the braid.

Using crimp hand tool equipped with the appropriate dies, crimp in the area defined.

Solder straight shielded contacts

Solder right angle shielded contacts

Assembly method

- Slide the outer ring over the cable jacket. Trim the cable according to the recommended dimensions.
- Insert the cable dielectric and the center conductor inside the inner sleeve.

- Solder the central conductor to the shielded center contacts.
- Slide the outer ring towards the inner sleeve ans recover the braid.
- Solder by introducing metal through the outer ring hole.

How to build your part number

\qquad

Amphenol

Amphenol East Asia Electronic Technology(Shen Zhen)Co., Ltd.

Block A3/A4, The4th Ind.District of
Ind. HQ, Dong keng Road,
Gong Ming Town, Shen zhen, china
Fax +86 (0) 75527549955
http: //www.dsubconnector.com Technical support
Tel: +33 (0) 384859400
$+86(0) 75527177945$

