Glass Capacitors CY10, 15 (QPL to MIL-C-11272/01/02)

APPLICATIONS

These extremely stable glass capacitors, AVX style CY, meet or exceed all requirements of MIL-C-11272. With glass dielectric, fused monolithic construction, and true glass-to-metal seals at the leads, they have very low losses and are virtually immune to severe environmental stresses.

PERFORMANCE CHARACTERISTICS

Tolerance: Available tolerances for each value of capacitance are shown in the ordering information table. For codes, refer to the Part Numbers paragraph.

Temperature Coefficient: +140 ±25 ppm/°C at 100kHz. TC will track and retrace to within ±5 ppm. Capacitance drift is less than 0.1% or 0.1pF, whichever is greater.

Voltage Coefficient: Zero.

Losses: Extremely low, and remain relatively low at elevated temperatures. Dissipation factor is not more than 0.001 at 1.0kHz and 25°C.

Life: After 2,000 hours at 125°C with 150% of rated voltage applied, capacitance change is less than 0.5% or 0.5pF, whichever is greater.

Insulation Resistance: Greater than 100,000 megohms at 25°C; greater than 10,000 megohms at 125°C.

Voltage/Temperature Rating: Voltage ratings are shown in the ordering information table. The operating temperature range is -55° C to $+125^{\circ}$ C with no derating required.

Moisture Resistance: Meets or exceeds all requirements of MIL-C-11272 and MIL-STD-202, Method 106.

Radiation Resistance: The unique materials and construction techniques involved with glass capacitors make them ideal for use in radiation environments. After a total dose of nearly 10⁸ rads (H₂O) glass capacitors exhibit only a minor change in capacitance (≤.5%) and an 8% change in dissipation factor. Furthermore, glass capacitors can operate in fast neutron flux environments of 10¹⁵ N cm²sec¹¹ and experience little or no damage in component parameters.

Additional performance details are given in the AVX "Performance Characteristics of Multilayer Glass Dielectric Capacitors" technical paper.

DIMENSIONS:

millimeters (inches)

Case Size	L	W	Т	Lead Dia. +0.1 (+0.004) -0.03 (-0.001)	Weight (Grams)
CY10	8.74 ± 1.19 (0.344 ± 0.047)	4.37 ± .79 (0.172 ± 0.031)	1.98 ± .79 (0.078 ± 0.031)	.51 (0.020)	.25 – .50
CY15	11.91 ± 1.19 (0.469 ± 0.047)	6.76 ± .79 (0.266 ± 0.031)	2.77 ± 1.19 (0.109 ± 0.047)	.51 (0.020)	.75 – 1.25

Note: Standard leads are solder-coated Dumet.

Glass Capacitors

Part Numbers and Ordering Information

HOW TO ORDER

MARKING

Capacitance Code

Capacitance Code is expressed in picofarads (pF). The first two digits represent significant figures and the third digit specifies the number of zeros to follow; i.e. 101 indicates 100 pF. For values below 10 pF, R = decimal point:

i.e. 1R5 indicates 1.5 pF.

Capacitance Tolerance

citance Tolera $C = \pm .25 \text{ pF}$ $D = \pm .50 \text{ pF}$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$

 $M = \pm 20\%$

RATINGS & PART NUMBER REFERENCE (Standard Values)

Military Type Designation	Cap. (pF)	Tolerances Available	DC Working Voltage		
	CY10				
CY10C0R5_ CY10C1R0_ CY10C1R1_ CY10C1R1_ CY10C2R2_ CY10C2R2_ CY10C3R3_ CY10C3R3_ CY10C3R3_ CY10C3R3_ CY10C3R3_ CY10C3R3_ CY10C4R7_ CY10C5R1_ CY10C5R1_ CY10C6R2_ CY10C6R2_ CY10C6R2_ CY10C6R2_ CY10C7R5_ CY10C7R5_ CY10C100_ CY10C300_ CY10C301_ CY10C3	0.5 1.0 1.5 2.2 2.7 3.0 3.3 3.6 3.9 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 110 120 130 110 120 130 110 120 130 150 160 180 220 240 270	CY10 C C C C C C C C C C C C C C C C C C C	500 500 500 500 500 500 500 500		

Military Type Designation	Cap. (pF)	Tolerances Available	DC Working Voltage		
	CY15				
CY15C221_	220	F, G, J, K, M	500		
CY15C241_	240	F, G, J, K, M	500		
CY15C271_	270	F, G, J, K, M	500		
CY15C301_	300	F, G, J, K, M	500		
CY15C331_	330	F, G, J, K, M	500		
CY15C361_	360	F, G, J, K, M	500		
CY15C391_	390	F, G, J, K, M	500		
CY15C431_	430	F, G, J, K, M	500		
CY15C471_	470	F, G, J, K, M	500		
CY15C511_	510	F, G, J, K, M	500		
CY15C561_	560	F, G, J, K, M	300		
CY15C621_	620	F, G, J, K, M	300		
CY15C681_	680	F, G, J, K, M	300		
CY15C751_	750	F, G, J, K, M	300		
CY15C821_	820	F, G, J, K, M	300		
CY15C911_	910	F, G, J, K, M	300		
CY15C102_	1,000	F, G, J, K, M	300		
CY15C112_	1,100	F, G, J, K, M	300		
CY15C122_	1,200	F, G, J, K, M	300		

Add letter for tolerance code above lines.

Add letter for tolerance code above lines.