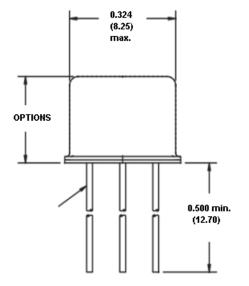


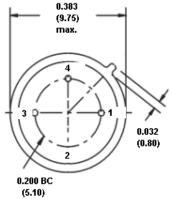
XR-R (HC35 or TO-5) Cold Weld Series

Crystal Resonator

Description

Vecton International's XR-R (HC35-TO5 style) cold weld crystals provide a precision, high reliability design in a rugged mount. These precision crystals offer excellent industry leading performance characterisitcs and tight stabilities in a wide range of frequencies. Low phase noise and low g-sensitivty options make this an ideal choice for Microwave, Satellite, Telemetry, Radar and Military Communication applications.


Features


- Industry Standard Base (2 pt, 3 pt, 4 pt blank mounts)
- · Variety of package heights available
- AT, SC and IT-Cut Fundamental and OT Modes
- Low Phase Noise, Low G-Sensitivity options
- Tight Stabilities and Tolerances, Excellent Aging
- Robust Rugged Design for demanding environments
- Swept Quartz & Hi-Rel Screening Options Available
- High Temperature Options to +200°C
- MIL-PRF-3098 equivalent (CR101/U, CR102/U, CR103/U)

Applications

- Telecommunications
- Military & Defense
- Microwave
- Telemetry
- Ground and Satellite Communications
- Precision Oscillators (TCXO, VCXO, OCXO)

Standard Physical Specifications

PIN CONNECTIONS
1: Crystal

2: N/C

3: Crystal

4: Ground

HEIGHT	PACKAGE EXAMPLES				
CODE	XR-R SERIES				
OPTION	inches	mm			
1	0.265	6.73			
2	0.230	5.84			
3	0.200	5.08			

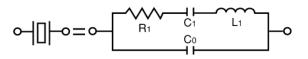
Reference dimensions specified in inches and millimeters (mm). Specification subject to change without notice.

Typical Electrical Performance Characteristics

AT-CUT VARIETIES						
Performance Characterisitc	Symbol	Typical Performance Specifications				
Frequency Range	F _o	7 MHz to 225 MHz				
Operating Temperature Range		-55°C to +125°C (high temperature up to +200°C available)				
Frequency Stability over Operating Temp Range	F _T	+/- 5 ppm to +/- 50 ppm (mode, frequency and operating temp range dependent)				
Frequency Calibration Tolerance +25°C	F _R -F _L	+/- 10 ppm typical (+/- 2 ppm available)				
Equivalent Series Resistance	R (ESR)	10 ohms to 100 ohms (mode and frequency dependent)				
Shunt Capacitance	C _o	2.5 pF - 4 pF typical (MIL-PRF-3098 CR101, CR102, CR103 types < 7 pF max.)				
Motional Capacitance	C ₁	0.1 fF - 30 fF (mode and frequency dependent)				
Load Capacitance	C _∟	series to 32 pF (customer specified load)				
Drive Level	DL	100 uW (50 uW to 5 mW)				
Aging per year after first 30 days		< 3 ppm (< 1ppm available)				

DOUBLY ROTATED (DR)-CUT VARIETIES (SC, MODIFIED SC, IT, ETC)						
Performance Characterisitc	Symbol	Typical Performance Specifications				
Frequency Range	F _o	7 MHz to 225 MHz				
Turn Point	TP	+75°C to +105°C (mode, cut, frequency dependent, other turn points available)				
Frequency Calibration Tolerance	F _R -F _L	+/- 1 ppm to +/- 5 ppm typical				
Equivalent Series Resistance	R (ESR)	15 ohms to 180 ohms (mode and frequency dependent)				
Shunt Capacitance	C _o	2.5 pF - 4 pF typical				
Motional Capacitance	C ₁	0.1 fF - 30 fF (mode and frequency dependent)				
Load Capacitance	C _L	series to 32 pF (customer specified load)				
Drive Level	DL	100 uW (50 uW to 5 mW)				
Aging per year after first 30 days		1 ppm				

PHASE NOISE @ 100 Hz OFFSET (dBc/Hz)							
Mode - Cut	Frequency Range	Phase Noise					
Fundamental-AT	7 MHz -to 30 MHz	-80 to -115					
Fundamental-DR	7 IVITIZ - (O 30 IVITIZ	-00 (0 -115					
3 rd OT - AT	17 MHz - 105 MHz	-80 to -135					
3 rd OT - DR	17 WIDZ - 105 WIDZ	-115 to -150					
5 th OT - AT	40 MHz - 175 MHz	-90 to -135					
5 th OT - DR	40 IVIDZ - 173 IVIDZ	-115 to -140					
7 th OT - AT	70 MHz - 225 MHz	-80 to -110					

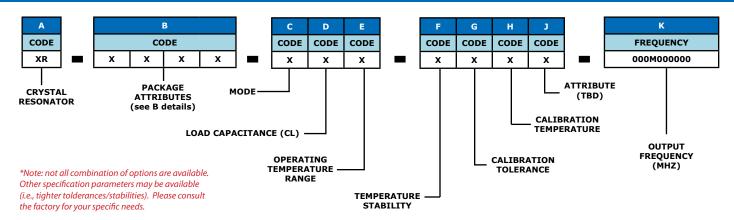

Phase Noise performance	e is mode and	l frequency dep	endent
-------------------------	---------------	-----------------	--------

NOMINAL G-SENSITIVITY (4 pt. blank mount)				
Cut G-SENSITIVITY				
AT	1 X 10 ⁻⁹ /g (average attainable when specified)			
DR (SC-IT) 5 x 10 ⁻¹⁰ /g (average attainable when specified)				
Results assume same frequency and mode when specified. Better results are available.				

TYPICAL ESR & C ₁ BY MODE AND FREQUENCY RANGE							
Mode	Frequency Range (MHz)	*ESR Typical (ohms)	*C₁ Typical (fF)				
Fund.	7 - 35 MHz	25-360	5 - 25				
3 rd	17 - 105 MHz	40	1 -2.5				
5 th	40 - 175 MHz	75	0.70				
7 th	70 - 225 MHz	120	0.35				

*ESR and C1 values are dependent upon the specified frequency and mode of vibration.

EQUIVALENT CIRCUIT OF A CRYSTAL RESONATOR



Vectron International designs and manufactures HC35 series crystals for a wide variety of commercial and high reliability applications. Our proven cleanroom finish processes and fully integrated environmental vacuum bake cold weld systems yield excellent aging and low perturbations.

We have tight controls over series resistance, motional capacitance, temperature characteristics and other parameters critical to your application. We primarily build to customer specifications but we've optimized designs on all frequencies that are commonly used in telecommunications.

Please feel free to contact us with your questions. We are here to assist you with selecting the best performing and most cost effective crystal for your application.

PART NUMBER ORDERING INFORMATION

PART NUMBER CODES (attribute details)

В							
	X		X		X	x	
CODE	PACKAGE TYPE	CODE	PACKAGE HEIGHT (A)	CODE	SEAL METHOD	CODE	LEAD STYLE
R	HC35	1	.265 (6.73)	1 CW		1	STANDARD
		2	.230 (5.84)			2	SOLDER DIP
		3	.200 (5.08)			3	CUT PIN 2
		-	_		6		•

		3 .200 (5.08)					3	COT PIN 2				
	С		E			F		G		Н		J
CODE	MODE		OPERATIN	IG		FREQUENCY		FREQUENCY		FREQUENCY		
1	Fund	CODE	TEMPERATU RANGE	JRE	CODE	STABILITY OVER	CODE	CALIBRATION TOLERANCE	CODE	CALIBRATION TEMPERATURE	CODE	TBD
3	3rd OT	A	-55°C to +8	5°C		TEMPERATURE	A	+/- 5 ppm	Α	+25°C	A	TBD
5	5 th OT	В	-55°C to +10		A	+/- 5 ppm	В	+/- 10 ppm	В	+50°C	В	TBD
7	7 th OT	c	-55°C to +12		В	+/- 10 ppm	c	+/- 12 ppm	c	+55°C	- c	TBD
9	9 th OT		-40°C to +7	-	С	+/- 12 ppm	D	+/- 15 ppm	D	+60°C	╫┋	TBD
	D	E	-40°C to +8		D	+/- 15 ppm	E	+/- 20 ppm	E	+65°C	<u> </u>	TBD
		F	-40°C to +10	-	E	+/- 20 ppm	F	+/- 25 ppm	F	+70°C	╂	TBD
CODE	LOAD CAPACITANCE	G	-30°C to +8		F	+/- 25 ppm	G	+/- 30 ppm	G	+75°C	╢╸	TBD
s	Series	Н	-30°C to +8		G	+/- 30 ppm	н	+/- 32 ppm	н	+80°C	Н	TBD
A	8 pF	<u>"</u>	-30°C to +8		Н	+/- 32 ppm	ן י		J T	+85°C	<u>"</u>	TBD
В	10 pF	<u> </u>	-		J	+/- 40 ppm		+/- 40 ppm		+85°C +90°C	⊣	TBD
c	12 pF	K	-10°C to +6		К	+/- 50 ppm	K	+/- 50 ppm	K		K	
D	15 pF	M	-10°C to +7		М	+/- 60 ppm	M	+/- 60 ppm	М	+95°C	M	TBD
E	18 pF	N	-5°C to +70	_	N	+/- 75 ppm	N	+/- 75 ppm	N	+100°C	N	TBD
F	20 pF	P	0°C to +50	_	Р	+/- 80 ppm	P	+/- 80 ppm	P	+105°C	P	TBD
G		R	0°C to +55		R	+/- 90 ppm	R	+/- 90 ppm	R	+110°C	R	TBD
	25 pF	s	0°C to +60		s	+/- 100 ppm	S	+/- 100 ppm	S	+115C	s	TBD
H	30 pF	Т	0°C to +70		Т	+/- 130 ppm	Т	+/- 130 ppm	Т_	+120°C	<u> </u>	TBD
J	32 pF	U	0°C to +85	°C	U	+/- 150 ppm	U	+/- 150 ppm	U	+125°C	<u>'</u>	TBD
K	35 pF	V	+10°C to +4	l0∘C	v	+/- 200 ppm	V	+/- 200 ppm	z	Custom	Z	Custom
M	40 pF	w	-10°C to +7	0°C	w	+/- 250 ppm	w	+/- 250 ppm		ALIBRATION		
N	45 pF	Y	-55°C to +18	35°C	Υ	+/- 300 ppm	Υ	+/- 300 ppm	AL	IPERATURE IS WAYS +25°C		
Р	50 pF	z	-20°C to +18	30∘C	z	Custom	z	Custom		SS OTHERWISE SPECIFIED		
R	55 pF	1	0°C to +150	0°C								
s	60 pF	2	0°C to +200	0∘C								
Т	65 pF	9	Custom									
U	70 pF											

ν

w

z

75 pF

80 pF 90 pF

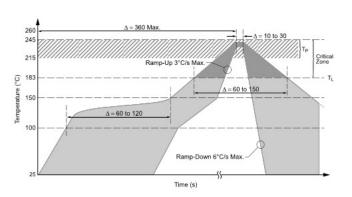
Custom

Typical Environmental Specifications

TEST DESCRIPTION	SPECIFICATION REFERENCE
SHOCK	MIL-STD-202, Method 213, Cond. C (100g, 6ms, Half-Sine)
VIBRATION	MIL-STD-202, Method 201/204 (Random-Sine, 20g)
TEMPERATURE CYCLE	MIL-STD-883, Method 1010 (-55°C/+125°C), 10 cycles
THERMAL SHOCK	MIL-STD-202, Method 107
MOISTURE RESISTANCE	MIL-STD-202, Method 106
SALT ATMOSPHERE	MIL-STD-202, Method 101
ACCELERATION	MIL-STD-883, Method 2001, Condition A (5,000g)
SOLDERABILITY	MIL-STD-202, Method 208 (ANSI-EIA-J-STD-002)
TERMINAL STRENGTH	MIL-STD-202, Method 211 (2lbs)
PIND	MIL-STD-883, Method 2020, Condition A or B (20g, 10g)
FINE LEAK	MIL-STD-202, Method 112, Condition C-IIIc (1x10-8 atm/cc2)
GROSS LEAK	MIL-STD-202, Method 112, Condition D
RESISTANCE TO SOLVENTS	MIL-STD-202, Method 215
RESISTANCE TO SOLDERING HEAT	MIL-STD-202, Method 210, Condition K
HIGH TEMPERATURE STORAGE	MIL-STD-883, Method 1008, Condition C (+125°C, 168 hours)
LOW TEMPERATURE STORAGE	MIL-PRF-3098

Vectron is uniquely equipped to handle all of your special test requirements. All environmental and qualification related tests are performed in house. We've demonstrated compliance and the ability to test to the requirements of all governing industry and military crystal specifications (past and present).

Some of which include;


- MIL-PRF-3098
- MIL-C-49468
- MIL-C-3098
- TOR-2006 (8583)-5236
- EEE-INST-002
- MIL-PRF-55310
- MIL-STD-202
- MIL-STD-883
- OTHERS

Additional Technical Information

Diagrams of Series and Parallel Resonant Circuits

Series Parallel R1 O' IC 180' CL1 L CL2

Typical Wave Solder Reflow Profile (Sn-Pb)

For Additional Information, Please Contact

USA:

Vectron International 4914 Gray Road Cincinnati, OH 45232 Tel: 1.513.542.5555 Fax: 1.513.542.5146 Tel: 1.888.328.7661

Europe:

Vectron International Landstrasse, D-74924 Neckarbischofsheim, Germany Tel: +49 (0) 3328.4784.17 Fax: +49 (0) 3328.4784.30

Asia:

Vectron International 1F-2F, No 8 Workshop, No 308 Fenju Road WaiGaoQiao Free Trade Zone Pudong, Shanghai, China 200131 Tel: 86.21.5048.0777 Fax: 86.21.5048.1881

Disclaimer

Vectron International reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Rev: 12/2009