PDIP-8 package not recommended for new design. refer to Diodes version datasheet for TO263-5L

Features

- Output voltage: $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and adjustable output version
- Adjustable version output voltage range, 1.23 V to 18V+4\%
$-150 \mathrm{KHz} \pm 15 \%$ fixed switching frequency
- Voltage mode non-synchronous PWM control
- Thermal-shutdown and current-limit protection
- ON/OFF shutdown control input
- Operating voltage can be up to 22 V
- Output load current: 3A
- TO220-5L, TO263-5L and PDIP-8 packages
- Low power standby mode
- Built-in switching transistor on chip

■ Applications

- Simple High-efficiency step-down regulator
- On-card switching regulators
- Positive to negative converter

- Pin Assignments

(Top View)

(Top View)
TO263-5L
(Top View)

Output ${ }^{1} 2$

GND
PDIP-8L

TO220-5L

150KHz, 3A PWM Buck DC/DC Converter

- Ordering Information

Block Diagram

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L

- Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
V_{CC}	Supply Voltage	+24	V
$\mathrm{~V}_{\mathrm{SD}}$	$\overline{\mathrm{ON} / \text { OFF Pin Input Voltage }}$	-0.3 to +18	V
$\mathrm{~V}_{\mathrm{FB}}$	Feedback Pin Voltage	-0.3 to +18	V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage to Ground	-1	V
P_{D}	Power Dissipation	Internally limited	W
T_{ST}	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{OP}	Operating Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
V_{OP}	Operating Voltage	+4.5 to +22	V

- Electrical Characteristics (All Output Voltage Versions)

Unless otherwise specified, $\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}$ for $3.3 \mathrm{~V}, 5 \mathrm{~V}$, adjustable version and $\mathrm{V}_{\mathbb{I N}}=18 \mathrm{~V}$ for the 12 V version. $\mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$

Specifications with boldface type are for full operating temperature range, the other type are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L

(AnaChip
 150KHz, 3A PWM Buck DC/DC Converter

AP1506

- Electrical Characteristics (Continued)

	Symbol	Parameter	Conditions	Typ.	Limit	Unit
AP1506-ADJ	$V_{\text {FB }}$	Output Feedback	$\begin{gathered} 5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{gathered}$ $V_{\text {out }}$ programmed for 3V	1.23	$\begin{aligned} & 1.193 / 1.18 \\ & 1.267 / 1.28 \end{aligned}$	V $V_{\text {MIN }}$ $V_{\text {MAX }}$
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	74		\%
AP1506-3.3V	$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{aligned} & 5.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}_{\mathrm{MIN}} \\ \mathrm{~V}_{\mathrm{MAX}} \end{gathered}$
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	75		\%
AP1506-5V	$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{gathered} 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{gathered}$	5	$\begin{aligned} & 4.8 / 4.75 \\ & 5.2 / 5.25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}_{\mathrm{MIN}} \\ \mathrm{~V}_{\mathrm{MAX}} \\ \hline \end{gathered}$
	η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	80		\%
AP1506-12V	$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{gathered} 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{gathered}$	12	$\begin{aligned} & 11.52 / 11.4 \\ & 12.48 / 12.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}_{\mathrm{MIN}} \\ \mathrm{~V}_{\mathrm{MAX}} \\ \hline \end{gathered}$
	η	Efficiency	$\mathrm{V}_{\text {IN }}=16 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	89		\%

Specifications with boldface type are for full operating temperature range, the other type are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L

■ Typical Performance Characteristics

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L

- Typical Performance Characteristics (Continued)

AP1506 Threshold Voltage v.s. Temperature (Vcc=12V , lo=100mA)

AP1506 Frequency v.s. Temperature (Vcc=12V, lo=500mA ,Vout=5V)

AP1506 Output Voltage v.s. Temperature
(Vin=12V ,lo=3A)

AP1506 ON/OFF Current v.s. ON/OFF Voltage (Vin=12V)

AP1506 Feedback Current v.s. Temperature (Vcc=12V , Vout=5V,Vfb=1.3V)

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L

■ Typical Application Circuit (TO packages)

(1) Fixed Type Circuit

(2) Adjustable Type Circuit

Vout $=\mathrm{V}_{\mathrm{FB}} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$
$\mathrm{V}_{\mathrm{FB}}=1.23 \mathrm{~V}$
$R 2=1 K \sim 3 K$

(3) Delay Start Circuit

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L

Function Description

Pin Functions

$+V_{\text {IN }}$
This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between $\left(+\mathrm{V}_{I N}-\mathrm{V}_{\text {SAT }}\right)$ and approximately -0.5 V , with a duty cycle of approximately $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\mathrm{IN}}$. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum.

Feedback (FB)

Senses the regulated output voltage to complete the feedback loop.

$\overline{\mathrm{ON}} / \mathrm{OFF}$ (SD)

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 150uA. Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 18 V) shuts the regulator down. If this shutdown feature is not needed, the $\overline{\mathrm{ON}}$ / OFF pin can be wired to the ground pin.

Thermal Considerations

The AP1506 is available in two packages: a 5 -pin TO-220 and a 5-pin surface mount TO-263.

The TO-220 package needs a heat sink under most conditions. The size of the heatsink depends on the input voltage, the output voltage, the load current and the ambient temperature. The AP1506 junction temperature rises above ambient temperature for a 3A load and different input and output voltages. The data for these curves was taken with the AP1506 (TO-220 package) operating as a buck-switching regulator in an ambient temperature of $25^{\circ} \mathrm{C}$ (still air). These temperature rise numbers
are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require more heat sinking.

The TO-263 surface mount package tab was designed to be soldering to the copper on a printed circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least $0.8 \mathrm{in}^{2}$, and ideally should have 2 or more square inches of 2 oz. Additional copper area improves the thermal characteristics, but with copper areas greater than approximately $6 \mathrm{in}^{2}$, only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multi-layer PC board with large copper areas and/or airflow will be recommended.

The AP1506 (TO-263 package) junction temperature rises above ambient temperature with a 2A load for various input and output voltages. This data was taken with the circuit operating as a buck-switching regulator with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 3A are used, double sided or multi-layer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (Once exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L

- Function Description (Continued)

Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multi-layer board and the amount of solder on the board. The effectiveness of the PC board to dissipate heat also depends on

Marking Information

(1) TO263-5L

the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.
(2) TO220-5L

(3) PDIP-8L

150KHz, 3A PWM Buck DC/DC Converter

Package Information

(1) Package Type: TO220-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	4.07	4.45	4.82	0.160	0.175	0.190
b	0.76	0.89	1.02	0.030	0.035	0.040
C	0.36	0.50	0.64	0.014	0.020	0.025
D	14.22	14.86	15.50	0.560	0.585	0.610
E	9.78	10.16	10.54	0.385	0.400	0.415
e	1.57	1.71	1.85	0.062	0.067	0.073
e1	6.68	6.81	6.93	0.263	0.268	0.273
F	1.14	1.27	1.40	0.045	0.050	0.055
H1	5.46	6.16	6.86	0.215	0.243	0.270
J1	2.29	2.74	3.18	0.090	0.108	0.125
L	13.21	13.97	14.73	0.520	0.550	0.580
Øp	3.68	3.81	3.94	0.145	0.150	0.155
Q	2.54	2.73	2.92	0.100	0.107	0.115

- Package Information(Continued)

(2) Package Type: TO263-5L

Land Pattern Recommendation (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	4.07	4.46	4.85	0.160	0.176	0.191
B	0.66	0.84	1.02	0.026	0.033	0.040
C	0.36	0.50	0.64	0.014	0.020	0.025
C2	1.14	1.27	1.40	0.045	0.050	0.055
D	8.65	9.15	9.65	0.341	0.360	0.380
E	9.78	10.16	10.54	0.385	0.400	0.415
e	1.57	1.71	1.85	0.062	0.068	0.073
L	14.61	15.24	15.88	0.575	0.600	0.625
L1	2.29	2.54	2.79	0.090	0.100	0.110
L2	-	-	2.92	-	-	0.115

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L
 Anachip

- Package Information(Continued)

(3) Package Type: TO220-5L(R) Mechanical drawing

Symbol	Dimensions In Millimeters			Dimensions In Inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	4.4	4.6	4.7	0.175	0.180	0.185
b	0.7	0.8	0.9	0.027	0.032	0.037
D	8.4	8.7	8.9	0.330	0.340	0.350
d1	1.0			0.039		
d2	6.3			0.248		
E	9.91	10.16	10.41	0.390	0.400	0.410
e	1.6	1.7	1.8	0.062	0.067	0.072
F	1.2	1.25	1.3	0.048	0.050	0.052
H1	6.4			0.250		
H2	20.8	21.6	22.4	0.820	0.850	0.880
H3	23.9	24.7	25.5	0.942	0.972	1.002
J1	2.7			0.105		
J2	3.7	4.5	5.3	0.147	0.177	0.207
J3	8.4			0.331		
Q	2.5	2.8	3.0	0.100	0.110	0.120

PDIP-8 package not recommended for new design, refer to Diodes version datasheet for TO263-5L

Anachip

- Package Information(Continued)

(4) Package Type: PDIP-8L

Symbol	Dimensions in millimeters		Dimensions in inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	-	-	5.33	-	-	0.210
A1	0.38	-	-	0.015	-	-
A2	3.1	3.30	3.5	0.122	0.130	0.138
B	0.36	0.46	0.56	0.014	0.018	0.022
B1	1.4	1.52	1.65	0.055	0.060	0.065
B2	0.81	0.99	1.14	0.032	0.039	0.045
C	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	9.53	0.355	0.365	0.375
E	7.62	7.94	8.26	0.300	0.313	0.325
E1	6.15	6.35	6.55	0.242	0.250	0.258
e	-	2.54	-	-	0.100	-
L	2.92	3.3	3.81	0.115	0.130	0.150
eB	8.38	8.89	9.70	0.330	0.350	0.382
S	0.71	0.84	0.97	0.028	0.033	0.038

